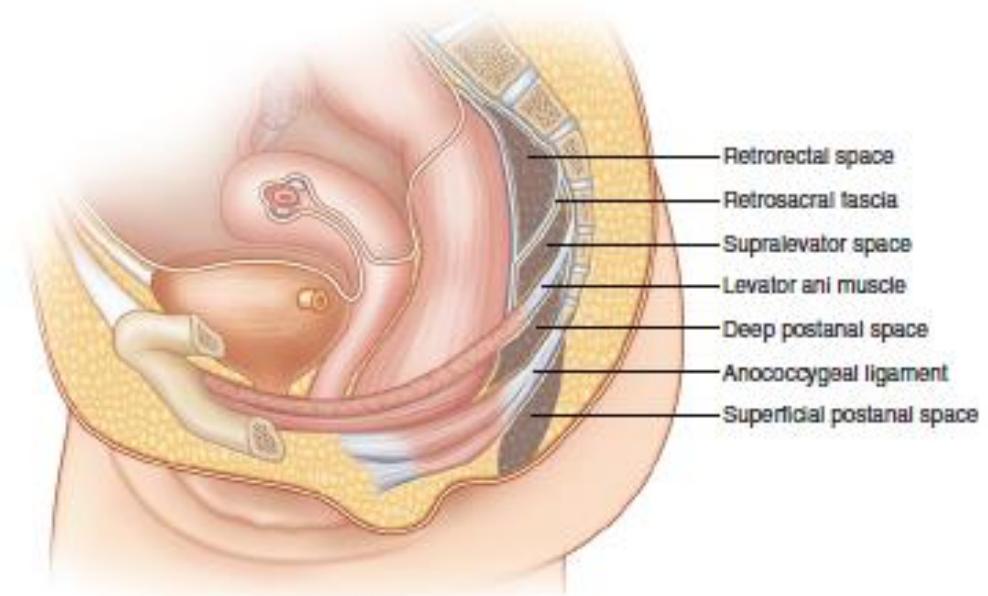
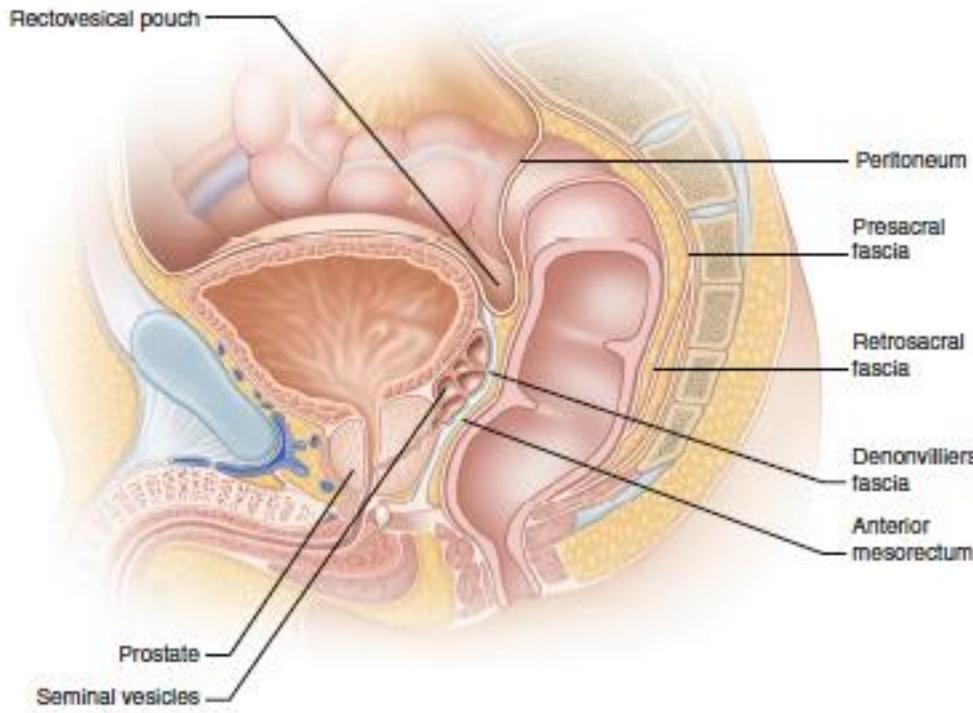




# Pushing Boundaries from Laparoscopy to Robot in Pelvic Surgery

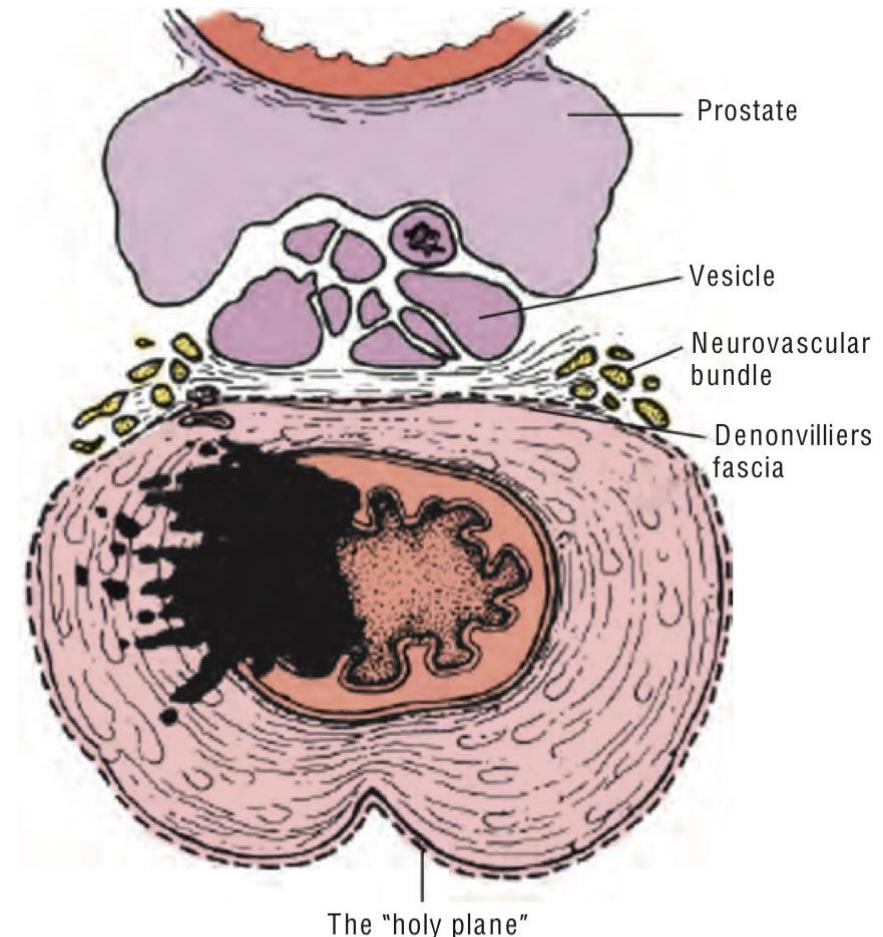


Emre BALIK MD. FESCP, intFASCRS, FISUCRS, FTSCRS  
Koç University School of Medicine  
Turkiye

[ebalik@ku.edu.tr](mailto:ebalik@ku.edu.tr)





# Pelvic Anatomy




- The close proximity of the rectum to essential structures like the urinary bladder, reproductive organs, and major blood vessels demands meticulous surgical planning and precision.
- Nerves and blood vessels in the pelvic region require careful dissection to preserve function and minimize complications.
- Understanding and navigating this complex pelvic anatomy are crucial for achieving successful outcomes in Total Mesorectal Excision.



# Total Mesorectal Excision

- **Total mesorectal excision:**  
Complete excision of visceral mesorectum with pelvic nerve preservation.
- Preservation of pelvic autonomic nerves and associated with highly negative CRM rates.
- Significantly lower locoregional failure rates.
- Standard of care in rectal cancer management



**FIGURE 4** Schematic representation of the relationship of the mesorectum to the anterior anatomic structures in a male patient. The neurovascular bundle contains the nerves responsible for erection, ejaculation, and aspects of bladder function. (From Heald RJ, Moran BJ. Embryology and anatomy of the rectum. *Semin Surg Oncol*. 1998;15:70.)





# Debeta for Techniques

- Open
- Laparoscopic
  - Standart care
  - Gold standart
    - COST, COLOR, CLASSIC
- Robotic
  - Standart care ?



# Limitations of Laparoscopic TME

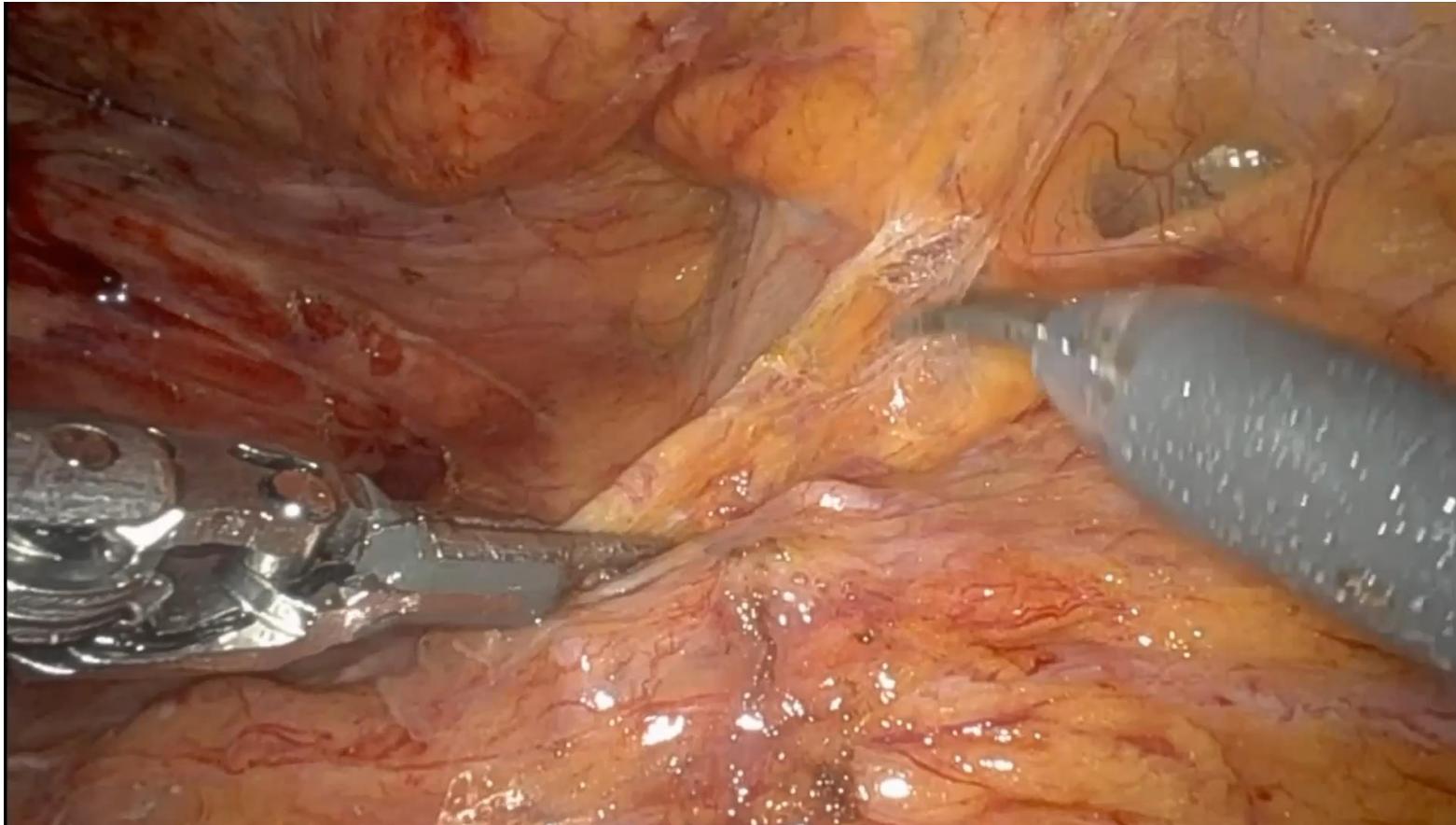
- Limited range of motion of instruments in a narrow pelvic cavity
- Loss of dexterity associated with exposure problems
- Inadequate visual field associated with unstable camera view and assistant's traction
- Limited Surgeon control
- Robotic surgery offers solutions to most of those problems.

**TABLE 1** Current main advantages and disadvantages of Robotic Surgery

| Advantages                                                                                       | Disadvantages                         |
|--------------------------------------------------------------------------------------------------|---------------------------------------|
| Better ergonomics                                                                                | High acquisition and maintenance cost |
| Intuitive handling of instruments                                                                | Material with a limit of uses         |
| 3D Immersive view                                                                                | Lack of tactile sensations            |
| Seven degrees of freedom (Endowrist ®)                                                           | Device volume                         |
| Filtering of physiological tremor                                                                | Docking time                          |
| Faster learning curve                                                                            | Risk of mechanical failure            |
| Digital network                                                                                  |                                       |
| Dual-Console                                                                                     |                                       |
| Incorporation of other elements:<br>Visualization with fluorescent, optical in the four trocars. |                                       |



# Robotic Total Mesorectal excision


- Advantage of robotic surgery in colorectal surgery is best represented in narrow and deep pelvis.
- Laparoscopy is technically demanding and some maneuvers can be difficult to perform because of limited dexterity and lack of a 3D view.
- Robotic instruments enables 3D view, wrist like movements and easier to perform surgical maneuvers in pelvis.



# Laparoscopic vs Robotic TME

- The enhanced 3D visualization and magnification provide clarity, enables precise dissection and meticulous suturing even in confined spaces of the pelvis.
- The robotic system's Endowrist technology affords surgeons a greater range of motion and dexterity, crucial for intricate maneuvers during TME









# Laparoscopic vs Robotic TME

- Reduced physical strain and improved ergonomics associated with robotics may lead to decreased surgeon fatigue and potentially shorter learning curves, ultimately translating into better patient outcomes and potentially higher adoption rates.



# Laparoscopic vs Robotic TME - Operative time

Systematic review analysis of robotic and transanal approaches in TME surgery- A systematic review of the current literature in regard to challenges in rectal cancer surgery

Julia K. Grass <sup>1</sup>, Daniel R. Perez <sup>\*,1</sup>, Jakob R. Izicki, Matthias Reeh  
 Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg-Eppendorf, Germany

- Cost and operative time are major disadvantages of robotic TME compared to laparoscopic TME. However, once learning curve is completed operative time becomes closer to laparoscopic TME.

| Author           | Year | Operation time |               |               |         | Author             | Year | Operation time |                 |        |         |
|------------------|------|----------------|---------------|---------------|---------|--------------------|------|----------------|-----------------|--------|---------|
|                  |      | taTME          | laTME         | roTME         | p-value |                    |      | taTME          | laTME           | roTME  | p-value |
| Hellan [83]      | 2007 |                |               | 285 (180–540) |         | Feroci [55]        | 2016 | 192 (90–335)   | 342 (249–536)   | <0.001 |         |
| Baik [31]        | 2008 | 204.3 ± 51.9   | 217 ± 51.6    | 0.477         |         | Ramji [100]        | 2016 | 240 ± 89       | 407 ± 97        | <0.001 |         |
| Patriti [84]     | 2009 | 208.0 ± 7.0    | 202.0 ± 12.0  | >0.05         |         | Shiomi [53]        | 2016 | 237 (125–421)  | 236.0 (123–484) | 0.83   |         |
| Park [45]        | 2010 | 168.6 ± 49.3   | 231.9 ± 61.4  | <0.001        |         | Yamaguchi [101]    | 2016 | 227 ± 62.6     | 232.9 ± 72.0    | 0.412  |         |
| Bianchi [27]     | 2010 | 237 (170–545)  | 240 (170–420) | 0.2           |         | Sammour [102]      | 2016 |                | NR              |        |         |
| Baek [85]        | 2010 |                | 270 (150–540) |               |         | Gomez Ruiz [103]   | 2016 |                | 292 (272–312)   |        |         |
| Pigazzi [86]     | 2010 |                | 297 (90–660)  |               |         | Colombo [104]      | 2016 | 228 (127–431)  | 274 (125–437)   | 0.005  |         |
| deSouza [87]     | 2010 |                | 347 (155–510) |               |         | Bedirli [105]      | 2016 | 208 ± 49       | 252 ± 62        | 0.027  |         |
| Baek [28]        | 2011 | 315 (174–585)  | 296 (150–520) | 0.357         |         | Buchs [106]        | 2016 | 368.6 ± 101.7  |                 |        | 7       |
| Kwak [46]        | 2011 | 228 (177–254)  | 270 (241–325) | <0.001        |         | Silva-Velazco [54] | 2017 | 239 (96–505)   | 288 (141–544)   | <0.001 |         |
| Koh [88]         | 2011 |                | 316 ± 57.4    |               |         | Lim [107]          | 2017 | 311.6 ± 79.8   | 365.2 ± 108.4   | 0.033  |         |
| Kim [30]         | 2012 | NR             | NR            |               |         | Kim [50]           | 2017 | 233.8 ± 77.2   | 288.1 ± 77.0    | <0.001 |         |
| Park [89]        | 2012 |                | 369 (306–410) |               |         |                    |      | 249.7 ± 80.9   | 285.8 ± 78.5    | <0.001 |         |
| Kang [29]        | 2013 | 277 ± 81.9     | 309 ± 115.2   | <0.001        |         | Law [108]          | 2017 | 225 (101–520)  | 260 (137–671)   | <0.001 |         |
| Park [90]        | 2013 | 185.4 ± 72.8   | 235.5 ± 57.5  | 0.001         |         |                    |      |                |                 |        |         |
| Luca [91]        | 2013 |                | 276 (155–448) |               |         |                    |      |                |                 |        |         |
| Baik [92]        | 2013 |                | NR            |               |         |                    |      |                |                 |        |         |
| Kenadawekar [93] | 2013 |                | 180 (150–230) |               |         |                    |      |                |                 |        |         |
| D'Annibale [94]  | 2014 | 280 (240–350)  | 270 (240–315) | <0.001        |         |                    |      |                |                 |        |         |
| Barnajian [47]   | 2014 | 180 (140–480)  | 240 (150–540) | 0.066         |         |                    |      |                |                 |        |         |
| Tam [95]         | 2014 | 240 (171–360)  | 260 (189–449) | 0.04          |         |                    |      |                |                 |        |         |
| Cho [48]         | 2015 | 272.4 ± 83.8   | 361.6 ± 91.9  | <0.001        |         |                    |      |                |                 |        |         |
| Melich [96]      | 2015 | 262 (252–272)  | 285 (266–305) |               |         |                    |      |                |                 |        |         |
| Serin [97]       | 2015 | 140 (90–300)   | 182 (140–220) |               |         |                    |      |                |                 |        |         |
| Pai [98]         | 2015 |                | 345 ± 78      |               |         |                    |      |                |                 |        |         |
| Allemann [49]    | 2016 | 313            | 291           | 0.24          |         |                    |      |                |                 |        |         |
| Kim [60]         | 2016 | 277.0 ± 83.2   | 441.0 ± 90.2  | <0.001        |         |                    |      |                |                 |        |         |
| Kim [99]         | 2016 | 205.0 ± 163.8  | 441.0 ± 180   |               |         |                    |      |                |                 |        |         |



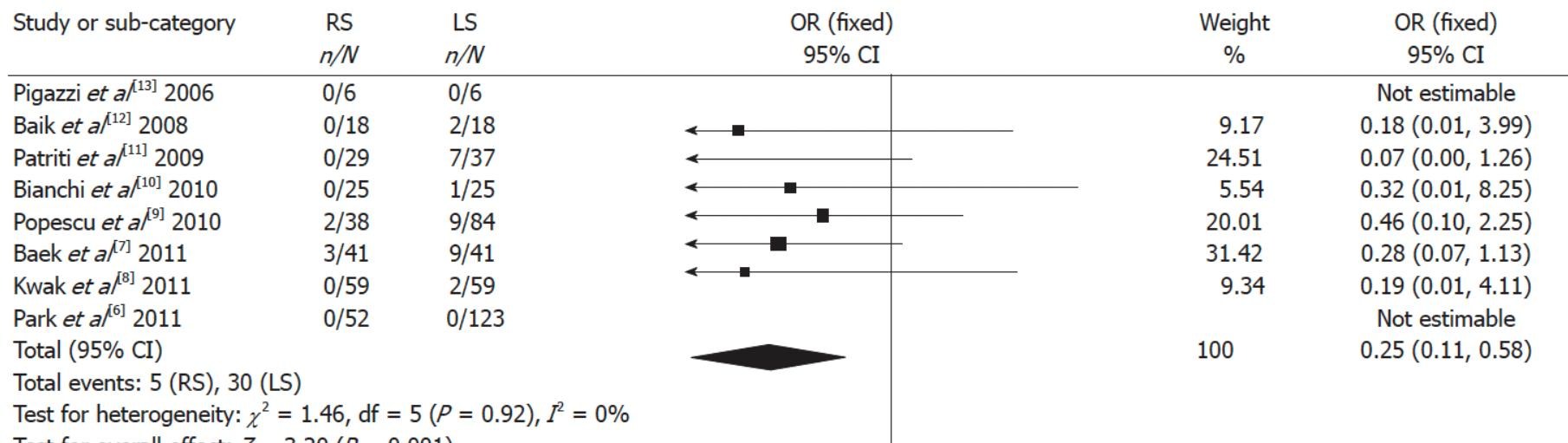
# Laparoscopic vs Robotic TME – Conversion Rates



World Journal of  
Gastroenterology

## Meta-analysis of robotic and laparoscopic surgery for treatment of rectal cancer

- Less conversion with robotic TME compared to laparoscopic surgery


Shuang Lin, Hong-Gang Jiang, Zhi-Heng Chen, Shu-Yang Zhou, Xiao-Sun Liu, Ji-Ren Yu

C

Review: Meta-analysis of robotic and laparoscopic surgery for treatment of rectal cancer

Comparison: 01 Intraoperative data

Outcome: 03 Conversion





# Laparoscopic vs Robotic TME – Perioperative Results

Surg Endosc (2008) 22:1601–1608  
DOI 10.1007/s00464-008-9752-z

## Robotic tumor-specific mesorectal excision of rectal cancer: short-term outcome of a pilot randomized trial

S. H. Baik · Y. T. Ko · C. M. Kang · W. J. Lee · N. K. Kim · S. K. Sohn · H. S. Chi · C. H. Cho

**Methods** Between April 2006 and February 2007, 36 patients were randomly assigned to receive R-TSME or L-TSME. During the study, 18 patients underwent robotic low anterior resection using the da Vinci Surgical System, and 18 patients had conventional laparoscopic low anterior resection. Patient characteristics, perioperative clinical results, complications, and pathologic details were compared between the two groups.

**Table 2** Operative clinical results

|                          | R-TSME (n = 18) Mean ± SD, median (range) | L-TSME (n = 16) Mean ± SD, median (range) | p      |
|--------------------------|-------------------------------------------|-------------------------------------------|--------|
| Operative time (min)     | 217.1 ± 51.6, 202.5 (149–315)             | 204.3 ± 51.9, 196.0 (114–297)             | 0.477  |
| Hemoglobin change (g/dl) | 0.6 ± 0.6, 0.5 (0.0–1.6)                  | 0.8 ± 1.0, 0.9 (0.0–3.4)                  | 0.511  |
| Days to peristalsis      | 1.8 ± 0.4, 2 (1–2)                        | 2.4 ± 1.3, 2 (1–6)                        | 0.071  |
| Length of stay (days)    | 6.9 ± 1.3, 7 (5–10)                       | 8.7 ± 1.3, 9 (6–12)                       | <0.001 |
| Conversion: n. (%)       | 0 (0.0)                                   | 2 (11.1)                                  | 0.486  |

R-TSME, robotic tumor-specific mesorectal excision; L-TSME, laparoscopic tumor-specific mesorectal excision; SD, standard deviation



# Laparoscopic vs Robotic TME – Perioperative

## Results

### ORIGINAL ARTICLE

#### The Impact of Robotic Surgery for Mid and Low Rectal Cancer A Case-Matched Analysis of a 3-Arm Comparison—Open, Laparoscopic, and Robotic Surgery

Jeonghyun Kang, MD, Kyu Jong Yoon, MD, Byung Soh Min, MD, Hyuk Hur, MD, Seung Hyuk Baik, MD, PhD,  
Nam Kyu Kim, MD, PhD, and Kang Young Lee, MD, PhD

- Propensity score matched analysis of 165 patients in each group
- Robotic surgery showed **better outcomes** than laparoscopic surgery with regard to time to resumed soft diet and length of hospital stay.
- No significant difference in means of 2 years disease free survival was seen in all of three groups

TABLE 5. Postoperative Recovery and Pain Control Between the 3 Groups

|                                          | OS             | LS             | RS             | P      |
|------------------------------------------|----------------|----------------|----------------|--------|
| Time to first flatus, mean $\pm$ SD      | 3.0 $\pm$ 1.4  | 2.4 $\pm$ 1.2  | 2.2 $\pm$ 1.1  | <0.001 |
| Time to resumed soft diet, mean $\pm$ SD | 6.4 $\pm$ 2.5  | 5.2 $\pm$ 2.4  | 4.5 $\pm$ 1.9  | <0.001 |
| Length of hospital stay, mean $\pm$ SD   | 10.0 $\pm$ 8.0 | 13.5 $\pm$ 9.2 | 10.8 $\pm$ 5.5 | <0.001 |
| PCA route, n (%)                         |                |                |                | <0.001 |
| None                                     | 0 (0)          | 0 (0)          | 1 (0.6)        |        |
| IV                                       | 42 (25.5)      | 134 (81.2)     | 149 (90.3)     |        |
| Epidural                                 | 123 (74.5)     | 31 (18.8)      | 15 (9.1)       |        |
| No. postoperative IV analgesics          |                |                |                |        |
| Nonopioids, mean $\pm$ SD                |                |                |                |        |
| POD 1                                    | 0.4 $\pm$ 0.8  | 0.4 $\pm$ 0.7  | 0.3 $\pm$ 0.7  | 0.630  |
| POD 2                                    | 0.7 $\pm$ 0.9  | 0.5 $\pm$ 0.9  | 0.5 $\pm$ 0.8  | 0.156  |
| POD 3                                    | 0.6 $\pm$ 0.9  | 0.5 $\pm$ 0.9  | 0.5 $\pm$ 0.9  | 0.264  |
| POD 4                                    | 0.5 $\pm$ 0.8  | 0.5 $\pm$ 0.9  | 0.2 $\pm$ 0.7  | 0.006  |
| POD 5                                    | 0.4 $\pm$ 0.7  | 0.4 $\pm$ 0.8  | 0.2 $\pm$ 0.5  | 0.016  |
| Opioids, mean $\pm$ SD                   |                |                |                |        |
| POD 1                                    | 0.7 $\pm$ 1.0  | 0.4 $\pm$ 0.7  | 0.2 $\pm$ 0.6  | <0.001 |
| POD 2                                    | 0.8 $\pm$ 1.0  | 0.6 $\pm$ 1.0  | 0.2 $\pm$ 0.6  | <0.001 |
| POD 3                                    | 0.5 $\pm$ 0.9  | 0.4 $\pm$ 0.7  | 0.2 $\pm$ 0.6  | 0.004  |
| POD 4                                    | 0.3 $\pm$ 0.7  | 0.2 $\pm$ 0.7  | 0.1 $\pm$ 0.5  | 0.229  |
| POD 5                                    | 0.2 $\pm$ 0.6  | 0.2 $\pm$ 0.5  | 0.1 $\pm$ 0.3  | 0.015  |

Bold values indicate statistically significant.

SD indicates standard deviation; PCA, patient controlled anesthesia; VAS, visual analog scale; POD, postoperative day.



# Laparoscopic vs Robotic TME – Perioperative

## Comparison of laparoscopic *versus* robot-assisted *versus* transanal total mesorectal excision surgery for rectal cancer: a retrospective propensity score-matched cohort study of short-term outcomes

J. C. Hol  <sup>1,2,\*</sup>, T. A. Burghgraef  <sup>3,4</sup>, M. L. W. Rutgers <sup>5</sup>, R. M. P. H. Crolla <sup>6</sup>, N. A. W. van Geloven <sup>7</sup>, R. Hompes <sup>5</sup>, J. W. A. Leijtens <sup>8</sup>, F. Polat <sup>9</sup>, A. Pronk <sup>10</sup>, A. B. Smits <sup>11</sup>, J. B. Tuynman <sup>1</sup>, E. G. G. Verdaasdonk <sup>12</sup>, E. C. J. Consten <sup>3,4</sup> and C. Sietses <sup>2</sup>

More primary anastomoses are formed with robotic surgery

Table 3 Intraoperative parameters after propensity score matching

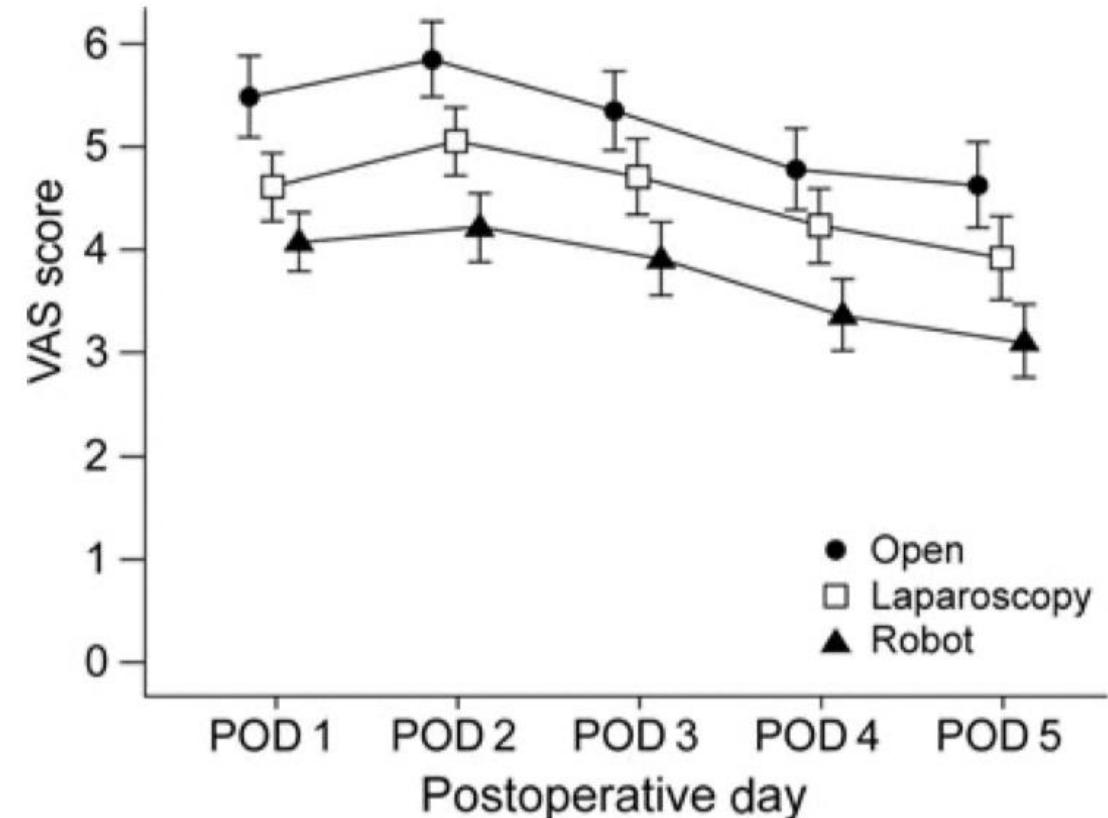
|                                    | Matched cohort           |                    |                    |        | Post hoc testing                 |                                  |                            |
|------------------------------------|--------------------------|--------------------|--------------------|--------|----------------------------------|----------------------------------|----------------------------|
|                                    | Laparoscopy<br>(n = 108) | Robot<br>(n = 108) | TaTME<br>(n = 108) | P      | P<br>Laparoscopy<br>versus robot | P<br>Laparoscopy<br>versus TaTME | P<br>Robot versus<br>TaTME |
| <b>Procedure</b>                   |                          |                    |                    |        |                                  |                                  |                            |
| LAR + colostomy                    | 36 (33.3)                | 11 (10.2)          | 17 (15.7)          | <0.001 | <0.001                           | 0.003                            | 0.227                      |
| LAR + anastomosis                  | 72 (66.7)                | 97 (89.8)          | 91 (84.3)          |        |                                  |                                  |                            |
| <b>Operating time (min)*</b>       | 149(53)                  | 186(59)            | 209(74)            | <0.001 | <0.001                           | <0.001                           | 0.015                      |
| <b>Conversion</b>                  | 4 (3.7)                  | 5 (4.6)            | 2 (1.9)            | 0.518  |                                  |                                  |                            |
| <b>Reason for conversion</b>       |                          |                    |                    |        |                                  |                                  |                            |
| Extensiveness of tumour            | 0 (0.0)                  | 0 (0.0)            | 1 (50.0)           |        |                                  |                                  |                            |
| Accessibility                      | 3 (75.0)                 | 5 (100.0)          | 1 (50.0)           |        |                                  |                                  |                            |
| Preoperative complication          | 1 (25.0)                 | 0 (0.0)            | 0 (0.0)            |        |                                  |                                  |                            |
| <b>Primary anastomosis</b>         | 72 (66.7)                | 97 (89.8)          | 91 (84.3)          | <0.001 | <0.001                           | 0.003                            | 0.227                      |
| <b>Stoma</b>                       |                          |                    |                    |        |                                  |                                  |                            |
| No stoma                           | 29 (26.9)                | 32 (29.6)          | 48 (44.4)          | <0.001 | 0.653                            | 0.005                            | 0.018                      |
| Diverting ileostomy                | 36 (33.3)                | 65 (60.2)          | 43 (39.8)          | <0.001 | <0.001                           | 0.323                            | 0.003                      |
| Diverting colostomy                | 7 (6.5)                  | 0 (0.0)            | 1 (0.9)            |        |                                  |                                  |                            |
| End colostomy                      | 36 (33.3)                | 11 (10.2)          | 16 (14.8)          |        | <0.001                           | 0.003                            | 0.291                      |
| <b>Additional resection</b>        | 2 (1.9)                  | 6 (5.6)            | 6 (5.6)            | 0.303  |                                  |                                  |                            |
| <b>Intraoperative complication</b> | 3 (2.8)                  | 5 (4.6)            | 4 (3.7)            | 0.771  |                                  |                                  |                            |

Values in parentheses are percentages, unless indicated otherwise; \*values are mean(s.d.). TaTME, transanal total mesorectal excision; LAR, low anterior resection.



# Laparoscopic vs Robotic TME – Perioperative

## Results


### ORIGINAL ARTICLE

#### The Impact of Robotic Surgery for Mid and Low Rectal Cancer

##### *A Case-Matched Analysis of a 3-Arm Comparison—Open, Laparoscopic, and Robotic Surgery*

Jeonghyun Kang, MD, Kyu Jong Yoon, MD, Byung Soh Min, MD, Hyuk Hur, MD, Seung Hyuk Baik, MD, PhD, Nam Kyu Kim, MD, PhD, and Kang Young Lee, MD, PhD

- In a comparison of postoperative pain status, the visual analog scale was **significantly lower** in the RS group than in the OS group and the LS group from postoperative day 1 to postoperative day 5 ( $P < 0.001$ ,  $P < 0.001$ ,  $P < 0.001$ ,  $P < 0.001$ , respectively)





# Laparoscopic vs Robotic TME - Pathological outcomes

RANDOMIZED CONTROLLED TRIAL

## Robot-assisted Versus Laparoscopic Surgery for Rectal Cancer

*A Phase II Open Label Prospective Randomized Controlled Trial*

Min Jung Kim, MD,\* Sung Chan Park, MD,\* Ji Won Park, MD,\*† Hee Jin Chang, MD, PhD,\*  
Dae Yong Kim, MD, PhD,\* Byung-Ho Nam, PhD,‡ Dae Kyung Sohn, MD, PhD,\* and Jae Hwan Oh, MD, PhD\*

- No difference in means of completeness of TME specimen and CRM positivity between laparoscopic and robotic surgery

TABLE 3. Postoperative Pathologic Outcomes

|                                               | RG (n = 66)     | LG (n = 73)     | P     |
|-----------------------------------------------|-----------------|-----------------|-------|
| Tumor size, cm, median (range)                | 2.5 (0–6.0)     | 2.1 (0–11.0)    | 0.84  |
| Number of harvested lymph nodes               |                 |                 | 0.04  |
| Median                                        | 18.0            | 15.0            |       |
| Range                                         | 7.0–59.0        | 4.0–40.0        |       |
| <12, n (%)                                    | 6 (9.1)         | 19 (26.0)       | 0.009 |
| ≥12, n (%)                                    | 60 (90.9)       | 54 (74.0)       |       |
| Tumor differentiation, n (%)                  |                 |                 | 0.412 |
| Well differentiated                           | 9 (13.6)        | 8 (11.0)        |       |
| Moderately differentiated                     | 53 (80.3)       | 64 (86.2)       |       |
| Poorly differentiated                         | 3 (4.6)         | 1 (1.4)         |       |
| Mucinous                                      | 1 (1.5)         | 0 (1.4)         |       |
| Tumor Regression Grade Scale, n (%)*          |                 |                 | 0.99  |
| 1                                             | 11 (16.7)       | 11 (15.1)       |       |
| 2                                             | 28 (42.4)       | 31 (42.5)       |       |
| 3                                             | 8 (12.1)        | 10 (13.7)       |       |
| 4                                             | 5 (7.6)         | 6 (8.2)         |       |
| p/ypT classification, n (%)                   |                 |                 | 0.956 |
| T0                                            | 5 (7.6)         | 6 (8.2)         |       |
| Tis                                           | 2 (3.0)         | 4 (5.5)         |       |
| T1                                            | 8 (12.1)        | 7 (9.6)         |       |
| T2                                            | 17 (25.8)       | 18 (24.6)       |       |
| T3                                            | 30 (45.5)       | 36 (49.3)       |       |
| T4a                                           | 2 (3.0)         | 1 (1.4)         |       |
| T4b                                           | 2 (3.0)         | 1 (1.4)         |       |
| p/ypN classification, n (%)                   |                 |                 | 0.713 |
| N0                                            | 46 (69.7)       | 56 (76.7)       |       |
| N1a                                           | 9 (13.7)        | 5 (6.9)         |       |
| N1b                                           | 7 (10.6)        | 6 (8.2)         |       |
| N1c                                           | 2 (3.0)         | 2 (2.7)         |       |
| N2a                                           | 2 (3.0)         | 3 (4.1)         |       |
| N2b                                           | 0 (0)           | 1 (1.4)         |       |
| Proximal resection margin, cm, median (range) | 12.3 (4.7–35.8) | 13.2 (6.8–29.0) | 0.727 |
| Distal resection margin, cm, median (range)   | 1.5 (0.04–6.7)  | 0.7 (0–2.5)     | 0.11  |
| Radical resection margin, cm, median (range)  | 0.7 (0–2.5)     | 0.7 (0–1.0)     | 0.551 |
| Circumferential resection margin, n (%)†      |                 |                 | 0.999 |
| Positive (≤1 mm)                              | 4 (6.1)         | 4 (5.5)         |       |
| Negative (>1 mm)                              | 61 (92.4)       | 68 (93.2)       |       |
| Quality of TME as rated by pathologist, n (%) |                 |                 | 0.599 |
| Complete                                      | 53 (80.3)       | 57 (78.1)       |       |
| Nearly complete                               | 12 (18.2)       | 16 (21.9)       |       |
| Incomplete                                    | 1 (1.5)         | 0 (0)           |       |

\*Data from patients with preoperative CRT or chemotherapy.

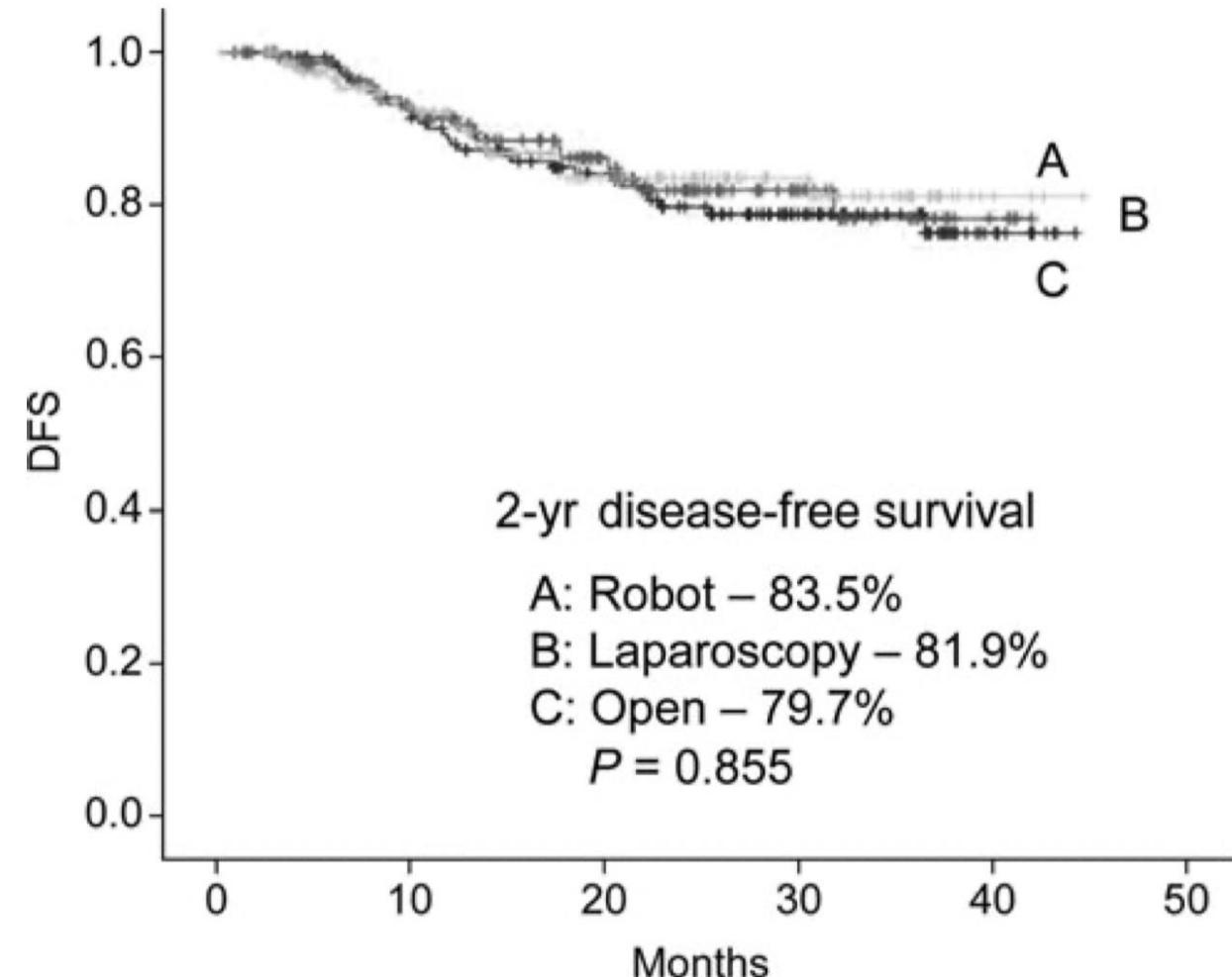
†One patient in each group had a peritonealized tumor.

CRT indicates chemoradiotherapy; TME, total mesorectal excision.



# Laparoscopic vs Robotic TME – Perioperative

## Results


### ORIGINAL ARTICLE

#### The Impact of Robotic Surgery for Mid and Low Rectal Cancer

*A Case-Matched Analysis of a 3-Arm Comparison—Open, Laparoscopic, and Robotic Surgery*

Jeonghyun Kang, MD, Kyu Jong Yoon, MD, Byung Soh Min, MD, Hyuk Hur, MD, Seung Hyuk Baik, MD, PhD, Nam Kyu Kim, MD, PhD, and Kang Young Lee, MD, PhD

- **No difference** in 2-year disease-free survival was observed among the 3 groups (RS vs LS vs OS, 83.5 vs 81.9 vs 79.7, respectively,  $p=0.855$ )





# Laparoscopic vs Robotic TME – Oncological

Results

Annals of

**SURGICAL ONCOLOGY**

OFFICIAL JOURNAL OF THE SOCIETY OF SURGICAL ONCOLOGY

## Laparoscopic Versus Robot-Assisted Versus Transanal Low Anterior Resection: 3-Year Oncologic Results for a Population-Based Cohort in Experienced Centers

T. A. Burghgraef, MD<sup>1,2</sup> , J. C. Hol, MD<sup>3,4</sup>, M. L. Rutgers, MD<sup>5</sup>, R. M. P. H. Crolla, MD<sup>6</sup>,  
A. A. W. van Geloven, MD, PhD<sup>7</sup>, R. Hompes, MD, PhD<sup>5</sup>, J. W. A. Leijtens, MD, PhD<sup>8</sup>,  
F. Polat, MD, PhD<sup>12</sup>, A. Pronk, MD, PhD<sup>9</sup>, A. B. Smits, MD, PhD<sup>10</sup>, J. B. Tuynman, MD, PhD<sup>4</sup>,  
E. G. G. Verdaasdonk, MD, PhD<sup>11</sup>, P. M. Verheijen, MD, PhD<sup>1</sup>, C. Sietses, MD, PhD<sup>3</sup>, and  
E. C. J. Consten, MD, PhD<sup>1,2</sup>

The oncologic results during the 3-year follow-up were **good and comparable** between laparoscopic, robot-assisted, and transanal total mesorectal technique at experienced centers. These techniques can be performed safely in experienced hands.



# Laparoscopic vs Robotic TME - Quality of Life

Colorectal  
Disease



Original article

doi:10.1111/codi.14051

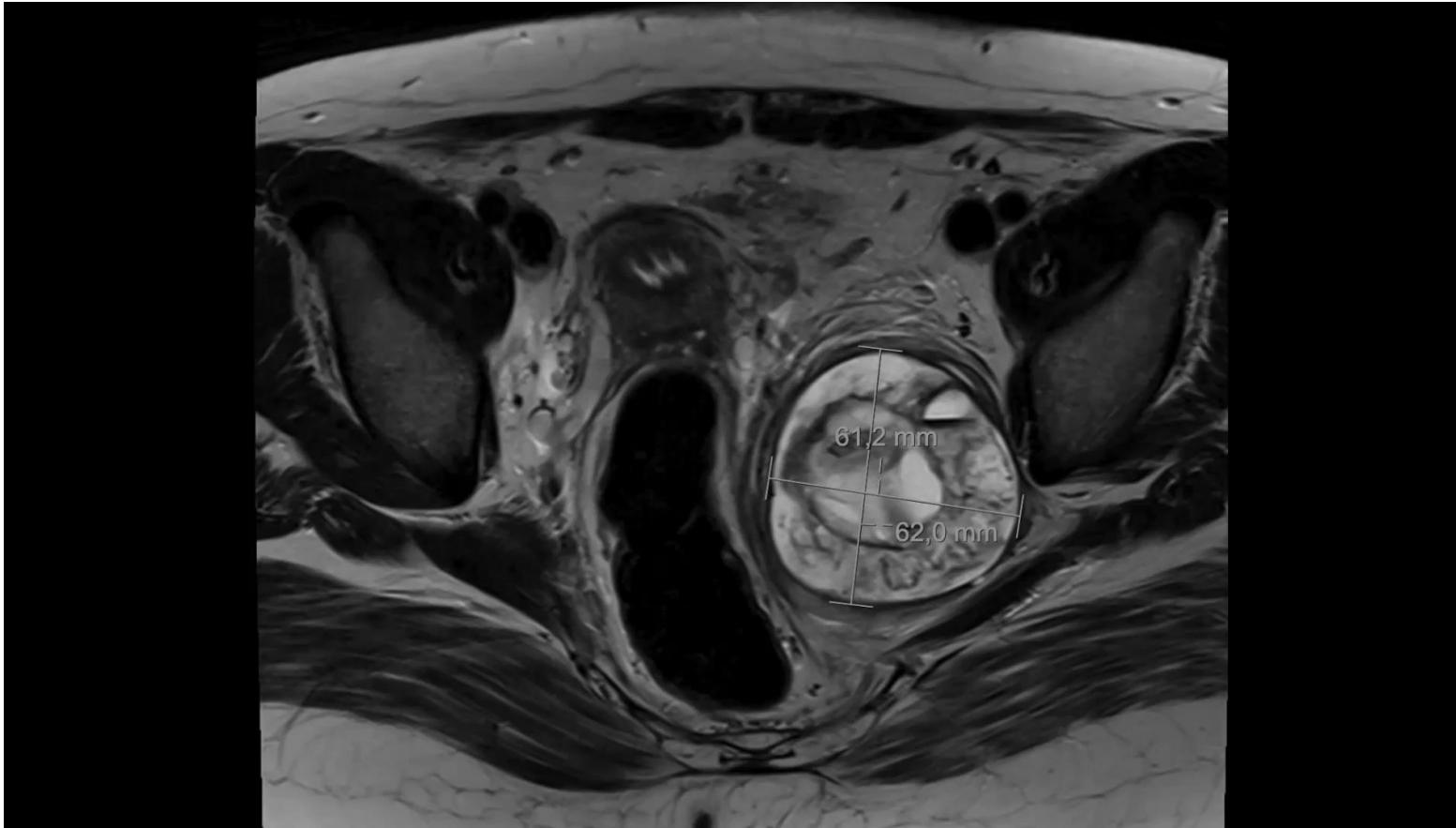
The impact of robotic surgery on quality of life, urinary and sexual function following total mesorectal excision for rectal cancer: a propensity score-matched analysis with laparoscopic surgery

H. J. Kim, G.-S. Choi, J. S. Park, S. Y. Park, C. S. Yang and H. J. Lee

Colorectal Cancer Center, Kyungpook National University Medical Center, School of Medicine, Kyungpook National University, Daegu, Korea

Received 17 April 2017; accepted 11 September 2017; Accepted Article online 20 February 2018

The robotic approach for TME was associated with **less impairment** of urinary and sexual function


**Table 3** International Prostatic Symptom Scores (IPSS) in male and female patients.

|        |                               | Baseline* | 3 months* | 6 months* | 12 months* |
|--------|-------------------------------|-----------|-----------|-----------|------------|
| Total  | Robot                         | 4.4 (4.8) | 8.1 (6.8) | 6.3 (4.6) | 5.0 (5.6)  |
|        | <i>P</i> -value (baseline vs) |           | <0.001    | <0.001    | 0.883      |
|        | Laparoscopy                   | 4.4 (3.8) | 9.0 (7.3) | 7.9 (7.3) | 5.7 (6.7)  |
|        | <i>P</i> -value (baseline vs) |           | <0.001    | <0.001    | 0.170      |
|        | <i>P</i> -value               | 0.614     | 0.231     | 0.019     | 0.423      |
| Male   | Robot                         | 4.5 (4.7) | 8.4 (7.3) | 6.5 (4.7) | 5.5 (6.0)  |
|        | <i>P</i> -value (baseline vs) |           | <0.001    | <0.001    | 0.243      |
|        | Laparoscopy                   | 4.2 (3.4) | 9.4 (7.5) | 8.4 (7.5) | 6.0 (6.7)  |
|        | <i>P</i> -value (baseline vs) |           | <0.001    | <0.001    | 0.023      |
|        | <i>P</i> -value               | 0.404     | 0.310     | 0.027     | 0.776      |
| Female | Robot                         | 4.4 (5.4) | 5.5 (5.2) | 3.8 (4.0) | 3.7 (4.4)  |
|        | Laparoscopy                   | 4.5 (5.1) | 5.8 (6.9) | 4.9 (6.9) | 4.6 (6.8)  |
|        | <i>P</i> -value               | 0.896     | 0.816     | 0.441     | 0.564      |

\*Values are mean (standard deviation).



# MY P





# Multivisceral Resection

- Traditionally: Most pelvic exenteration still performed with an open approach
- Laparoscopic pelvic exenteration introduced in 2003
- Robotic pelvic exenteration: First reported in 2009

Case Reports > *Gynecol Oncol.* 2004 May;93(2):543-5. doi: 10.1016/j.ygyno.2004.01.021.

## Laparoscopic hand-assisted Miami Pouch following laparoscopic anterior pelvic exenteration

C Pomel <sup>1</sup>, D Castaigne

Case Reports > *Gynecol Oncol.* 2009 Nov;115(2):310-1. doi: 10.1016/j.ygyno.2009.06.023.

Epub 2009 Jul 23.

## Robotic assisted total pelvic exenteration: a case report

Peter C W Lim <sup>1</sup>



# Multivisceral Resection



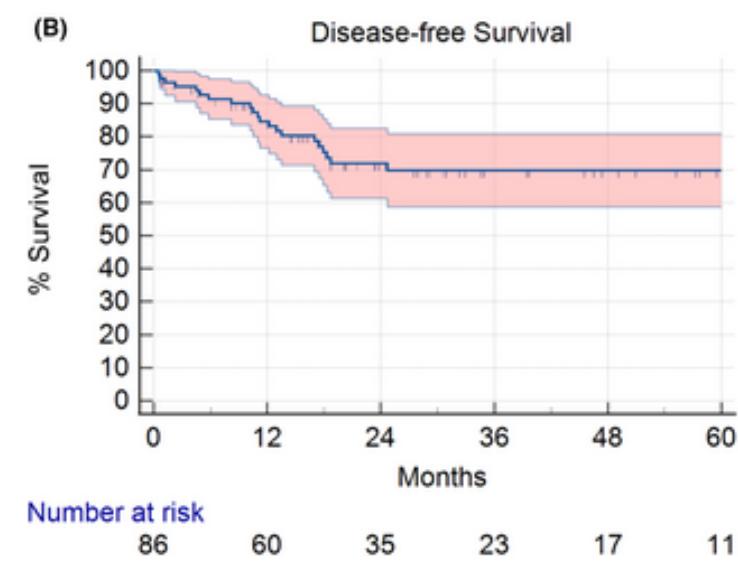
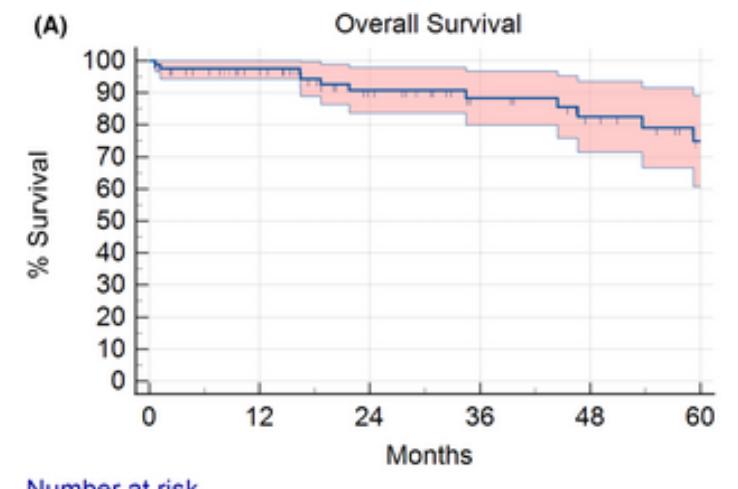
Yamaguchi, T., Akiyoshi, T., Fukunaga, Y. et al. Robotic extralevel abdominoperineal resection with en bloc multivisceral resection and lateral lymph node dissection for rectal cancer. *Tech Coloproctol* 24, 1093–1094 (2020).



# Multivisceral Resection

› *Colorectal Dis.* 2024 May;26(5):949–957. doi: 10.1111/codi.16964. Epub 2024 Apr 4.

## Perioperative and oncological outcomes following robotic en bloc multivisceral resection for colorectal cancer



Sandra R DiBrito <sup>1 2</sup>, Naveen Manisundaram <sup>1 3</sup>, Youngwan Kim <sup>1</sup>, Oliver Peacock <sup>1</sup>,  
Chung-Yuan Hu <sup>1</sup>, Brian Bednarski <sup>1</sup>, Y Nancy You <sup>1</sup>, Abhineet Uppal <sup>1</sup>, Matthew Tillman <sup>1</sup>,  
Tsuyoshi Konishi <sup>1</sup>, Harmeet Kaur <sup>4</sup>, Sarah Palmquist <sup>4</sup>, Emma Holliday <sup>5</sup>, Arvind Dasari <sup>6</sup>,  
George J Chang <sup>1</sup>

- 86 patients | 2009–2021 |
- Tumors: T3 (47%), T4 (47%), rectum 78%
- Conversions to open: 3 (3.5%)
- Median OR time: 430 min
- LOS: 4 days (vs. 11–16 for open)
- Complications: 38% overall, 11% major, 1% mortality



# Multivisceral Resection

- Oncological Outcomes
  - R0 resections: 91%
  - 3-year OS: 88%
  - 3-year DFS: 70%
  - Recurrence: 6% local, 26% distant



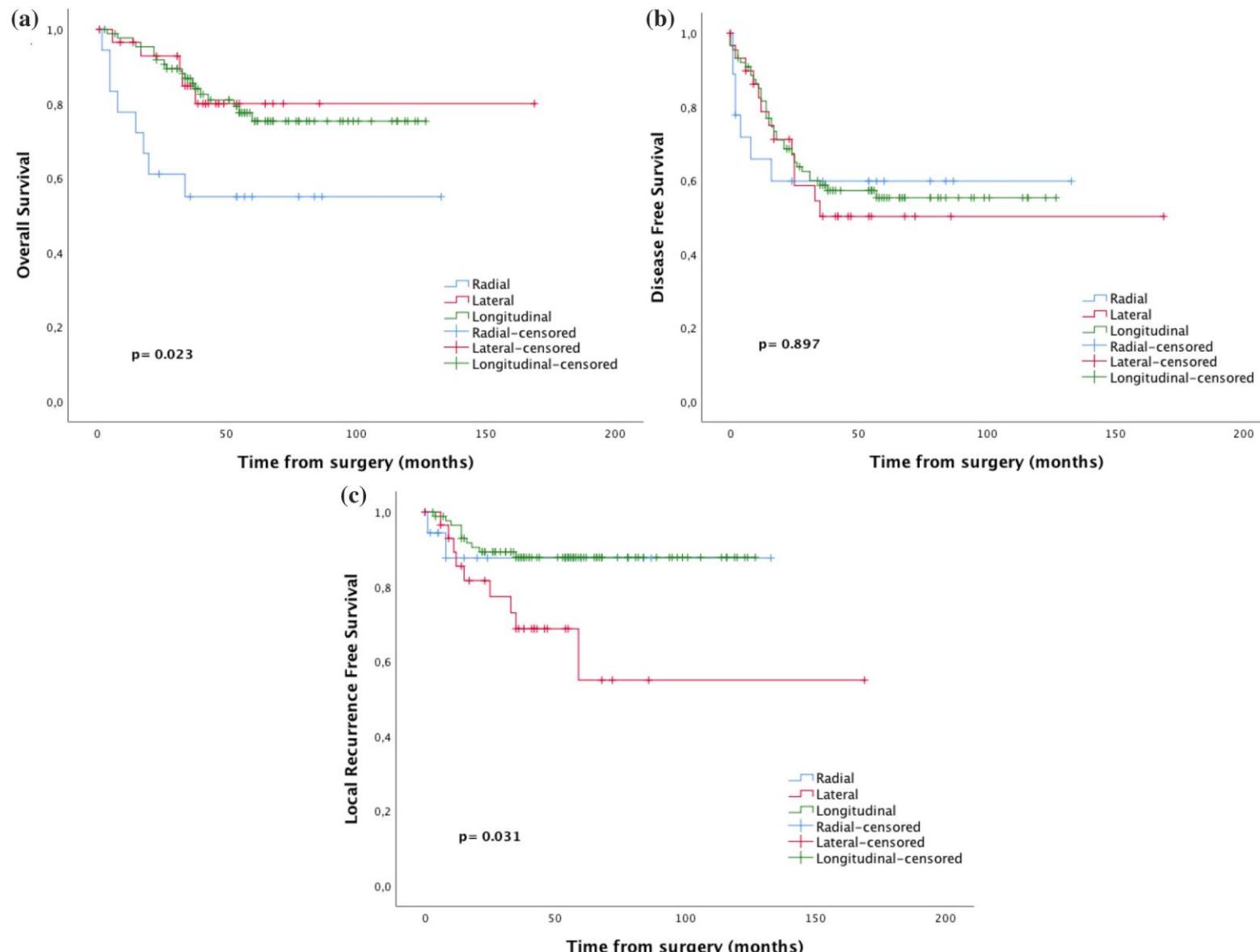
Colorectal Dis. 2024 May;26(5):



# Robotics Beyond TME

- Korea Univ. Anam Hospital (2008–2018, n=137)
- Three Types of bTME
  - Radial: invasion of adjacent pelvic organs
  - Lateral: pelvic lateral lymph node involvement
  - Longitudinal: very low tumors → ISR
- Key Outcomes
  - Morbidity: 49%
  - Mortality: 0.7% (1 patient)
  - R0 resections: 93% overall
  - Local recurrence: 15% (highest in lateral,  $p=0.041$ )
  - Distant metastasis: 34%

> *Updates Surg.* 2021 Jun;73(3):1103-1114. doi: 10.1007/s13304-020-00898-0. Epub 2020 Oct 17.


## **Robotic-assisted resection for beyond TME rectal cancer: a novel classification and analysis from a specialized center**

G N Piozzi <sup>1 2</sup>, T-H Lee <sup>2</sup>, J-M Kwak <sup>2</sup>, J Kim <sup>2</sup>, S-H Kim <sup>3</sup>



# Robotics Beyond TME

- Overall Survival (3y):
  - Radial: 55% (worst)
  - Lateral: 85%
  - Longitudinal: 87%
- DFS: No significant difference ( $p=0.897$ )
- LRFS: Worse in lateral group ( $p=0.031$ )
- Prognostic factors for OS: (y)pT, (y)pN, type of bTME

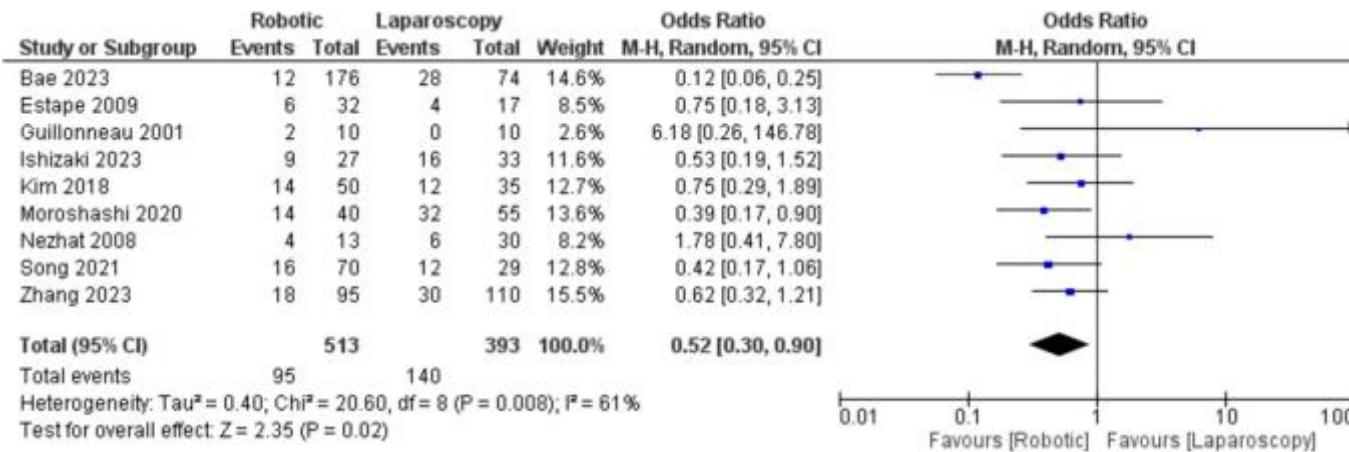




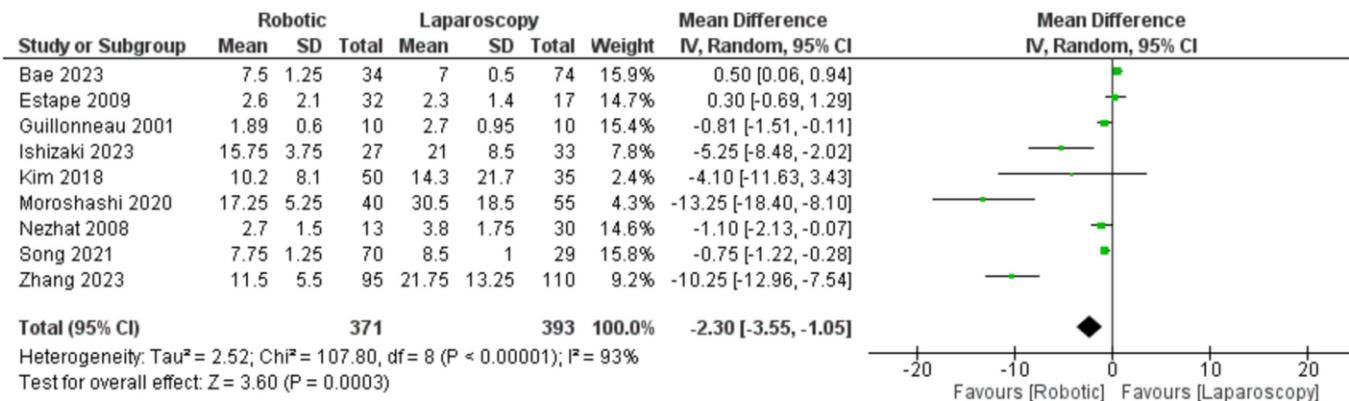
# Lateral Lymph Node Dissection

- Studies: 11 (667 robotic, 568 laparoscopic cases)
- Postoperative morbidity: ↓ with robotic (OR 0.52;  $p = 0.02$ )
- Hospital stay: shorter with robotic ( $-2.3$  days;  $p = 0.0003$ )
- Operative time: longer with robotic ( $+40$  min;  $p = 0.003$ )
- Lymph nodes harvested: no difference
- Major complications: no difference

Meta-Analysis > *J Gastrointest Cancer*. 2025 Jul 15;56(1):151.


doi: 10.1007/s12029-025-01251-7.

## Robotic Versus Laparoscopic Lateral Lymph Node Dissection for Advanced Pelvic Cancers: a Systematic Review and Meta-analysis


Mohamed Ali Chaouch <sup>1</sup>, Paul Leblanc-Even <sup>2</sup>, Ahmed Loghmari <sup>3</sup>, Adriano Carneiro da Costa <sup>4</sup>, Alessandro Mazzotta <sup>5</sup>, Salah Khayat <sup>2</sup>, Bassem Krimi <sup>2</sup>, Amine Gouader <sup>2</sup>, Jim Khan <sup>6</sup>, Christoph Reissfelder <sup>7</sup>, Wahid Fattal <sup>7</sup>, Hani Oweira <sup>7</sup>



# Lateral Lymph Node Dissection



## Odds of Morbidity



## Length of Hospital Stay



# Conclusion

---

- Robotic TME offers unparalleled visualization, enhanced dexterity, and ergonomic benefits when compared to laparoscopic techniques.
- Robotic TME offers less conversion, better functional outcomes and quality of life while offering comparable oncological results
- Its potential to reduce surgeon fatigue, and ease the learning curve can provide better patient outcome.



# Conclusion

- Robotics gives more flexibility
- Oncologic results are same in good hands
- Pathologic results are similar
- Functional results are better
- Future ..... NOM or Robotics

