Fistula-in-ano Masterclass

Ligation of Inter-sphincteric Fistula Tract and its Modifications

Khaled Madbouly, MD, PhD, FRCS, FACS, FASCRS, FISUCRS, MBA
Professor and Chairman of Colorectal Surgery Department
University of Alexandria - EGYPT
Consultant Colorectal Surgeon – Burjeel Royal Hospital- Abu Dhabi
President of Egyptian Society of Colon & Rectal Surgeons (ESCRS)
V. President of Egyptian Board of Colorectal Surgery
Regional Vise President of ISUCRS

Disclosures

- Speaker and trainer for Medtronic
- Consultant for Touch Stone
- Speaker for Sanofi pharmaceutical

Step by Step LIFT

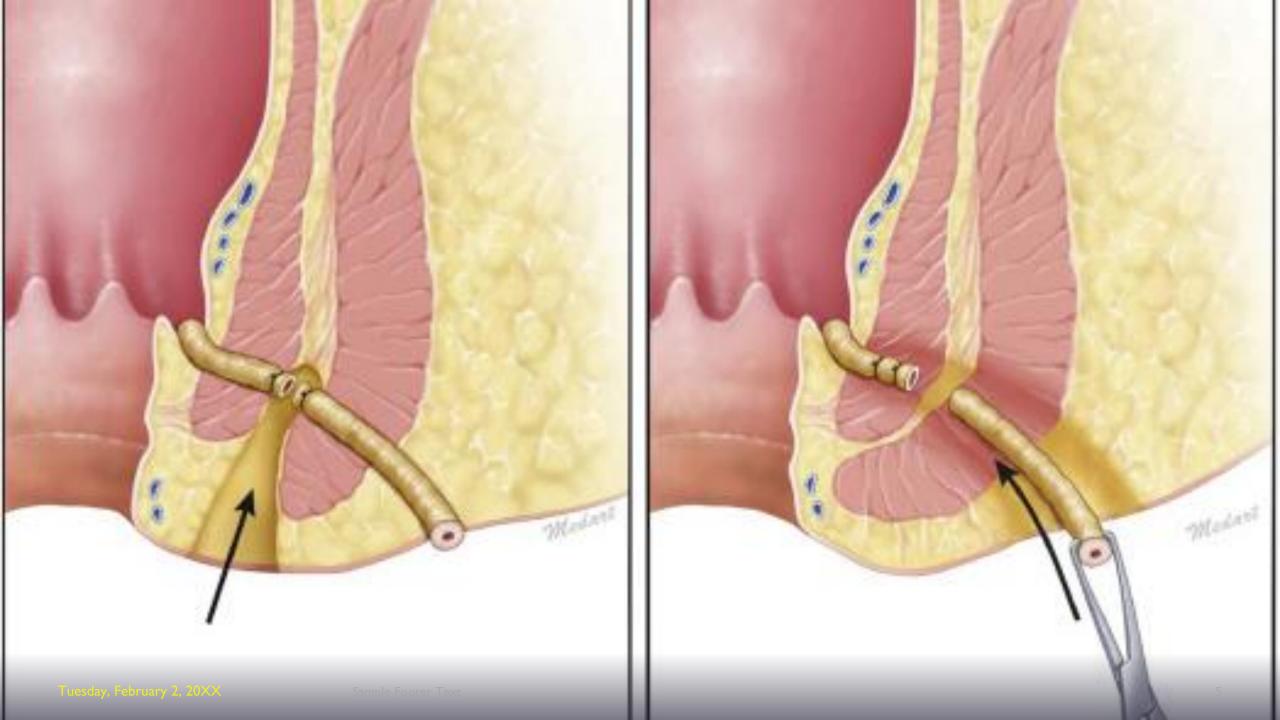
Prone-Jacknife/ lithotomy position

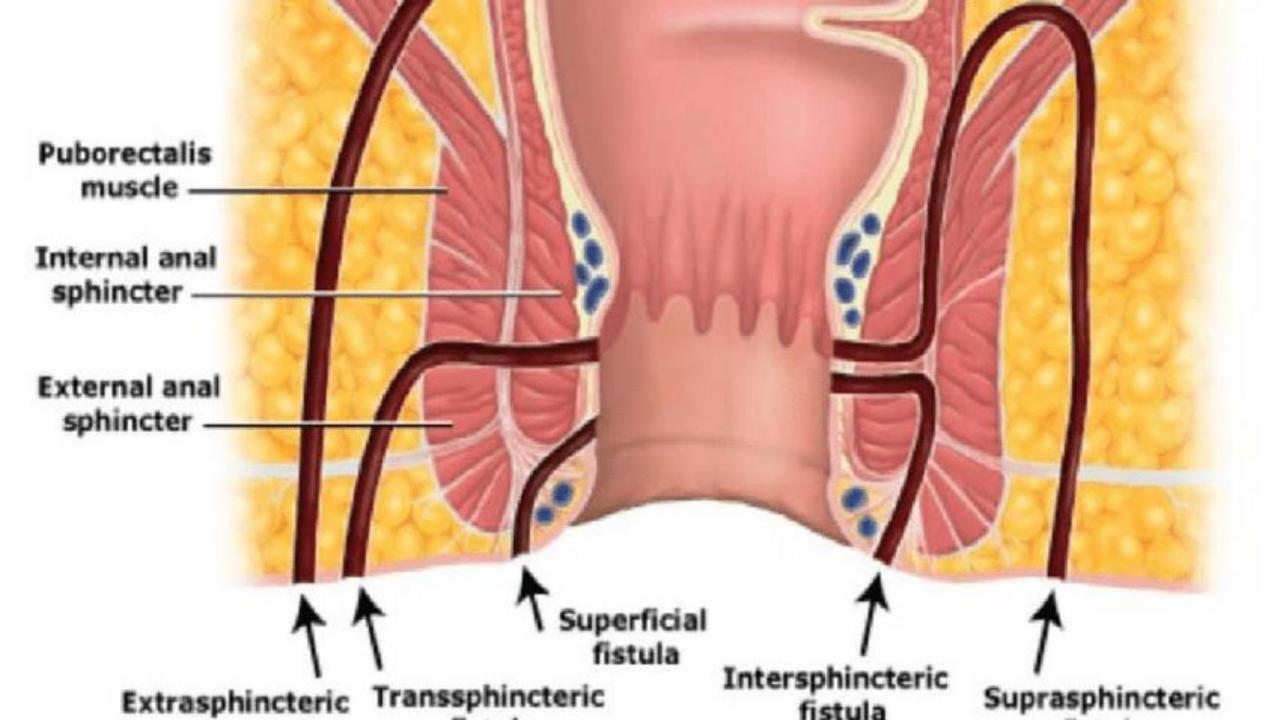
An internal opening was identified by injecting methylene blue or povidine iodine from an external opening, and tract probed by metal probe

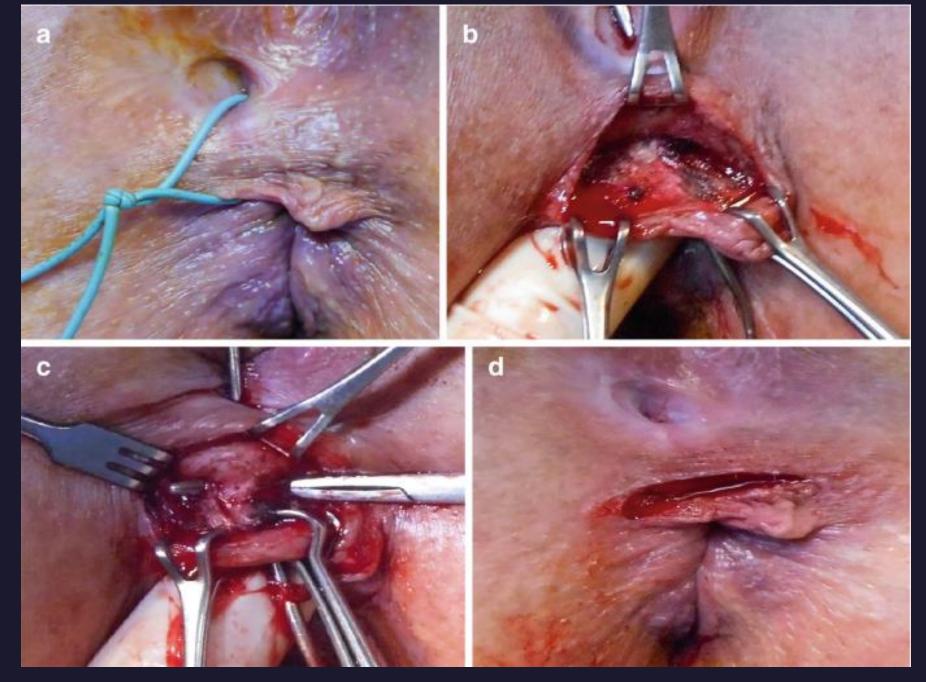
Incision made parallel to the anal verge about 2-3 cm above the intersphincteric groove

Dissection deep down into intersphincteric space with scissors and electric cautery to identify the fistula tract


This tract was then ligated on the internal opening site by polyglactin 2/0 (Vicryl 2/0) before being transected (or ligated on both sides from start)







Gecim et al, Fistula and abscess, Springer

Primary healing of original LIFT

Study	Sample size	Proportion (%)	95% CI
	-		
Tan et al. (2012)	24	62.5	40.594-81.201
Mushaya et al. (2012)	25	68	46.500-85.050
Wallin et al. (2012)	93	65.591	55.021-75.139
Dalbem et al. (2014)	22	77.273	54.630-92.179
Madbouly et al. (2014)	35	94.286	80.843-99.300
Total (fixed effects)	199	72.414	65.739–78.426
Total (random effects)	199	73.95	60.255-85.605

Primary Failure of original LIFT

Study	Sample size	Proportion (%)	95% CI
Tan et al. (2012)	24	37.5	18.799–59.406
Mushaya et al. (2012)	25	0	0.000-13.719
Wallin et al. (2012)	93	34.409	24.861-44.979
Dalbem et al. (2014)	22	22.727	7.821-45.370
Madbouly et al. (2014)	35	5.714	0.700–19.157
Total (fixed effects)	199	21.983	16.500-28.299
Total (random effects)	199	17.858	4.943-36.472

Overall Failures of original LIFT

Study	Sample size	Proportion (%)	95% CI	
Tan et al. (2012)	24	0	0.000-14.247	
Mushaya et al. (2012)	25	8	0.984–26.031	
Wallin et al. (2012)	93	25.806	17.287–35.923	
Dalbem et al. (2014)	22	0	0.000-15.437	
Madbouly et al. (2014)	35	20	8.441–36.938	
Total (fixed effects)	199	14.784	10.213-20.410	
Total (random effects)	199	9.711	1.723–23.165	

Overall healing of original LIFT

Study	Sample size	Proportion (%)	95% CI	
Tan et al. (2012)	24	62.5	40.594-81.201	
Mushaya et al. (2012)	25	92	73.969–99.016	
Wallin et al. (2012)	93	55.914	45.238-66.203	
Dalbem et al. (2014)	22	100	84.563-100.000	
Madbouly et al. (2014)	35	74.286	56.744-87.511	
Total (fixed effects)	199	71.489	64.766-77.575	
Total (random effects)	199	78.893	58.498-93.652	

Types of recurrences after LIFT

Author	Time to recurrence	Failure	Recurrence	Treatment of failure
Onkelen ¹⁶	NA	4 (18%)	No recurrence	4 intersphincteric by fistulectomy
Feng Ye ¹⁷	NA	5 (1.2%)	No recurrence	5 intersphincteric fistula and fistulectomy
Onkelen ⁶	NA	49%	No	8 intersphincteric fistula by fistulectomy
		20 pts	recurrence	4 by TARF
				8 by Seton
Han ⁴	NA	1(5%)	No recurrence	NA
Tsunoda ¹⁸	NA	1 (5%)	No recurrence	NA

Factors associated with Failure

• Factors associated with operation failure were collection, fistula tract size more than 5 millimeters, and the failure of ligating the tract in one attempt

Turkish journal of surgery July 2023

Modifications

- LIFT plus
- BioLIFT
- XenoLIFT

BJS Open, 2024, zrae055 https://doi.org/10.1093/bjsopen/zrae055 Original Article

OXFORD

110 patients included (50% female, median follow-up 92 months)

Ligation of intersphincteric fistula tract (LIFT) for trans-sphincteric cryptoglandular anal fistula: long-term impact on faecal continence

Justin Y. van Oostendorp^{1,2,*} (D, Carolien Verkade³ (D, Ingrid J. M. Han-Geurts¹ (D, Grietje J. H. van der Mijnsbrugge¹ (D, Dareczka K. Wasowicz-Kemps³ (D and David D. E. Zimmerman³ (D

101 patients (92%) were treated with previous surgeries (median 2, range 0–6) and 80% had previous seton drainage

short-term follow-up, including 11% newly induced cases of FI

	Total	Healed	Unhealed	Р
	<i>n</i> = 110	n = 31	n = 79	
Preoperative continence status				0.954
Continent	92 (84)	28 (30)	64 (70)	
Incontinent	18 (16)	3 (19)	15 (81)	
Gas	3 (3)	0 (0)	3 (100)	
Mucus	11 (10)	2 (18)	9 (82)	
Liquid stool	1 (1)	0 (0)	1 (100)	
Solid stool	3 (3)	1 (33)	2 (67)	
Postoperative short-/mid-term continence status (2018)				0.821
Continent	89 (81)	25 (28)	64 (72)	
Incontinent	20 (18)	6 (30)	14 (70)́	
Gas	4 (4)	2 (50)	2 (50)	
Mucus	11 (10)	3 (27)	8 (73)	
Liquid stool	2 (2)	0 (0)	2 (100)	
Solid stool	3 (3)	1 (33)	2 (67)	
Missing	1 (1)			
Change in postoperative continence status short-/mid-term (2018)				0.738
No	97 (88)	27 (28)	70 (72)	
Yes	12 (11)	4 (33)	8 (67)	
Missing	1 (1)			
Long-term (2023) continence status				0.075
Continent	19 (17)	4 (21)	15 (79)	
Incontinent	50 (46)	16 (32́)	34 (68)	
Gas	14 (13)	6 (43)	8 (57)	
Mucus	25 (23)	7 (28)	18 (72)	
Liquid stool	8 (8)	2 (25)	6 (75)	
Solid stool	3 (3)	1 (33)	2 (67)	
Missing	41 (37)			

Table 2 Continence status stratified by success of the LIFT procedure

The results of this study underscore the importance of considering individual patient experiences when evaluating treatments such as LIFT. While the findings suggest potential concerns regarding the impact on continence, the suitability of LIFT as a first-line therapy remains questionable, given the less-than-perfect outcomes observed. Notably, the impact on continence appears comparable to other more invasive techniques such as TAFR. The premature adoption of LIFT as a primary option for complex fistulas within the surgical community may stem from the lack of robust long-term functional outcome data²⁵. We urge fellow researchers to collect

LIFT Modifications

Period of study	Year published	Type of study	Procedure (n)	Type of fistula (%)	1ry healing (%)
June 2009–March 2012	2012	Р	LIFT with partial	Low	82%
			coreout	transsphincteric	
			fistulectomy (22)	fistula	
June 2012–March 2013	2014	R	LIFT with partial	High	87.2%
			coreout	transsphincteric	
			fistulectomy (39)		
June 2009–December 2010	2012	р	LIFT with partial	High	51.0%
			coreout	transsphincteric	
			fistulectomy and	fistula	
			TAFR (41)		
December 2010–March 2011	2012	Р	LIFT-plug (21)	Transsphincteric	95.0%
March 2010–August 2012	2012	р	LIFT with partial	Low	95.0%
			coreout	transsphincteric	
			fistulectomy and	(60%), complex	
			Seton (20)	(40%).	19

Bio-LIFT

Conclusions

Ligation of the intersphincteric fistula tract is a feasible, minimally invasive, cheap, and relatively easy procedure, which is safe and effective at the same time

LIFT and its modifications can be ideal for treating straightforward high anal fistulas in patient with no previous intervention

