

Surgical Innovation Mayo Clinic Rochester MN USA David W Larson MD MBA

Thank You

Disclosures

No Disclosures

You Might Think this is Minnesota

This is Minnesota

Surgical Innovation

"To achieve something you've never had, you might have to do something you never done"

- Academic Research (Patients First Charity)
- Technical Excellence (Intraoperative)
- •Collaboration (Perioperative Care)

How Do We Surgically Innovate?

Historical Frame of Mind?

- Traditional Questions:
 - •What Surgical Tools Will We Develop
 - How Will We Use Them

Modern Frame of Mind?

Historical Question:
What Tools Will We Develop?

Modern Question:

•What Will Pts/Providers do Differently if We Succeed?

Outputs

Outcomes -

Why not bet on the Tool?

Reason 1: The Tool/Product Doesn't guarantee the Behavior we seek.

Reason 2: Human Behavior is Unpredictable

Reason 3: Behavior emerges through product use.

What is the Behavior we seek?

Align Values (surgical excellence/research/collaboration) with Tools to achieve Innovation

The Future According to Larson?

•Surgeons:

• Deliver Cures through Minimal Means

• Surgical, Biological, Energy, Pharmacological.

•Surgery is **Outpatient.**

•Patients:

Minimize Clinic or Hospital exposure

Medical care provided at Home.

• Virtual, Automated, Proactive (Descriptive, predictive, prescriptive)

Steps along the Way: Technical Evolution

From Maximal to Minimal Surgery

The Death of Laparoscopic Surgery: 360K NSQIP

The Death of Laparoscopy.Davide Ferrari^{*1,2}, Tommaso Violante^{*1,3}, Marco Novelli⁴, Janani S. Reisenauer, Patrick Starlinger, Rory L. Smooth, David W. Larson¹

The Death of Laparoscopic Surgery: 360K NSQIP

Novelli⁴, Janani S. Reisenauer, Patrick Starlinger, Rory L. Smooth, David W. Larson¹

Disruptive Platform to Iterate:

Risks of Conversion 66,652 Patients from NSQIP

Use of Robotics

Conversion Leads to Increase:

•	Mortality,	OR 2.28
•	Complications,	OR 2.36

LOS >6 days,

OR 2.86

Trends and consequences of surgical conversion in the United States

Mohamed A. Abd El Aziz¹ · Fabian Grass¹ · Kevin T. Behm¹ · Anne-Lise D'Angelo¹ · Kellie L. Mathis¹ · Eric J. Dozois¹ · David W. Larson¹

Conversion Risk 13.8% vs 5%

Table 2 Surgical details							
rsion (<i>n</i> = 55)	No conversion (n = 545)	Total (n = 600)	P †				
36 (65)	398 (73.0)	434 (72-3)	0.241				
			< 0.001				
16 (29)	301 (55.2)	317 (52-8)					
39 (71)	244 (44.8)	283 (47-2)					
	rsion (n = 55) 36 (65) 16 (29) 39 (71)	rsion (n = 55) No conversion (n = 545) 36 (65) 398 (73.0) 16 (29) 301 (55.2) 39 (71) 244 (44.8)	rsion (n = 55) No conversion (n = 545) Total (n = 600) 36 (65) 398 (73·0) 434 (72·3) 16 (29) 301 (55·2) 317 (52·8) 39 (71) 244 (44·8) 283 (47·2)				

Table 4 Logistic regression analysis of conversion risk in all patients							
	Univariable ar	nalysis	Multivariable analysis				
	Odds ratio	Р	Odds ratio	Р			
Sex (M versus F)	1-84 (0-95, 3-58)	0.059	2.08 (1.03, 4.23)	0.004			
BMI (≥ 30 versus < 30 kg/m ²)	2.76 (1.57, 4.84)	< 0.001	2.90 (1.60, 5.27)	< 0.001			
Procedure (LAR versus APR)	0.7 (0.39, 1.26)	0.241					
Type of surgery (robotic versus laparoscopic)	0-33 (0-18, 0-61)	0.001	0.28 (0.15, 0.52)	< 0.001			
Treated stage							
1	1.00 (reference)		1.00 (reference)				
II	1.98 (0.81, 4.81)	0.132	2.80 (1.10, 7.10)	0.031			
III	1.63 (0.76, 3.50)	0.209	2-24 (1-01, 4-98)	0.048			
Previous abdominal surgery	1.43 (0.79, 2.57)	0.233	1.95 (1.03, 3.70)	0.041			
ASA grade (III-IV versus I-II)	1.42 (0.80, 2.55)	0.231	1.13 (0.61, 2.11)	0.689			
Age	0.99 (0.97, 1.12)	0-407					
Duration of surgery	1.00 (0.99, 1.00)	0.362					
Neoadjuvant therapy	0.95 (0.60, 1.84)	0.858					

Crippa, Achilli, Larson BJS 2020

Surgeon Workload 217 Case-Modified NASA-TLX

		SURGICAL APPROACH	
	Open	Laparoscopic	Robotic
		M(SD)	
Surgical duration	185.1 min (124.4)	199.3 min (101.5)	357.5 min (117.5)
Overall workload	45.0 (21.4)	47.0 (21.9)	35.3 (19.5)
Mental demand	9.4 (5.2)	11.1 (5.3)	9.5 (5.9)
Physical demand	9.0 (5.6)	10.7 (6.1)	6.9 (5.2)
Effort	10.2 (5.8)	11.1 (5.8)	9.4 (6.0)
Performance	3.0 (3.4)	1.8 (1.8)	1.3 (1.4) 📩
Frustration	6.2 (5.3)	7.5 (6.1)	4.1 (3.8)

Figure 3. Average workload for proctectomy (A) and colectomy (B) procedures according to surgical approach

Quantifying contributions to variation can identify strategies to reduce surgeon workload Katherine L. Forsyth, Ph.D., ^{1,2} Bethany R. Lowndes, Ph.D., M.P.H., ³ Scott R. Kelley, M.D., ⁴ Renaldo C. Blocker, Ph.D., ^{1,2} David W. Larson, M.D., MBA, ⁴M. Susan Hallbeck, Ph.D., ^{1,2,4} Heidi Nelson, M.D., ^{ext} 20 Mayo Foundation for Medical Education and Research | slide-22

Robotic vs Laparoscopic Rectal Surgery at Mayo 317 Robotic vs 283 Lap

_	ROBOTIC (317)	LAPAROSCOPIC (283)	TOTAL (600)	p value	Dethelesieel Markers	
LOS				<0.001		
Median (IQR)	3 (3-5)	5 (4-7)	4 (3-6)		\mathbf{D}_{ac}	70
LOS≥6 days	68 (21.45%)	122 (43.11%)	190 (31.7%)	<0.001	POSILIVE CRIVI $I(0.5\%)$ $4(1.5\%)$ $5(0.65\%)$ 0.5%	<i>y</i>
Readmission	43 (13.6%)	30 (10.6%)	73 (12.2%)	0.266		
Overall Complication	118 (37.2%)	145 (51.2%)	263 (43.8%)	<0.001		
Anemia	13 (4.1%)	28 (9.9%)	41 (6.8%)	< 0.005		
Transfusion	6 (1.9%)	22 (7.8%)	28 (4.7%)	<0.001		
Ileus	50 (15.8%)	51 (18.0%)	101 (16.8%)	0.463		
Leak*	23 (10.9%)	14 (8.9%)	37 (8.5%)	0.238		
Superficial wound infection	20 (6.3%)	15 (5.3%)	35 (5.83%)	0.598		
Cardiopulmonary complications	16 (5.05%)	20 (7.07%)	36 (6%)	0.299	Multivariant Risks for Complication	
UTI	5 (1.6%)	14 (4.95%)	19 (3.2%)	0.020	Wullivariant Misks for Complication	
Acute Kidney Injury	6 (1.89%)	8 (2.83%)	14 (2.33%)	0.449	Type of surgery	
Adjuvant Therapy	179 (57.2%)	149 (52.65%)	328 (55.0%)	0.266	((Robotic vs Lanaroscopic)) 0.56 (0.40-0.78) <0.001* 0.485 (0.29-0.82) 0.006).006*
Death <30 days	1 (0.3%)	1 (0.3%)	2 (0.3%)	0.936		

Legend: IQR: Interquartile Range; LOS: Length of Stay; UTI: Urinary Tract Infection; *: Assessed for patients undergoing restorative surgery.

Robotic surgery for rectal cancer provides advantageous outcomes over laparoscopic approach: results from a large retrospective cohort. Ann Surg 2020. Jacopo Crippa, MD^a, Fabian Grass, MD^a, Eric J. Dozois, MD^a, Kellie L. Mathis, MD^a, Amit Merchea, MD^b, Dorin T. Colibaseanu, MD^b, Scott R. Kelley, MD^a, and David W. Larson, MD, MBA^a

Complexity to Simplicity

Complex IBD

Pouch Excision

Pouch Revision

Advancing Complex Disease T4 disease Multi-visceral Resection

From Minimal to Minimum

Multi Port vs Single Port

XI Robot

SP Robot

Case	Final histology	Specimen size (cm)	Specimen area (cm ²)	LOS	Readmission	Return to OR	FU	Recurrence
1	TVA LGD	2.8 x 2.7 x 1.2	7.6	0	0	0	21	0
2	TVA LGD	5.4 x 4.2 x 1.6	22.7	0	1	0	22	0
3	T1 G2 adenocarcinoma	2.5 x 2.1 x 1.1	5.3	0	0	0	30	0
4	TVA LGD	1.9 x 1.3 x 0.9	2.5	0	0	0	15	0
5	TVA LGD	2.5 x 2.5 x 0.4	6.3	0	0	0	11	0
6	T2 G2 adenocarcinoma	2.6 x 2.5 x 1.4	6.5	0	0	0	24	0
7	T1 SM3 G2 adenocarcinoma	1.9 x 1.8 x 0.6	3.4	0	1	LAR	20	0
8	T1 G2 adenocarcinoma	1.2 x 1.2 x 0.6	1.4	0	0	0	23	0
9	TVA HGD	4 x 2.9 x 2.7	11.6	2	0	0	19	0
10	TVA LGD	3.3 x 3 x 0.7	9.9	0	0	0	12	0
11	Tis G1 adenocarcinoma	3.1 x 2.9 x 0.8	9	0	0	0	12	0
12	TVA HGD	1.4 x 0.9 x 0.2	1.3	0	0	0	8	0
13	T1 SM3 G2 adenocarcinoma	2.9 x 2.5 x 0.9	7.3	0	0	0	11	0
14	T2 G1 adenocarcinoma	2.2 x 2.1 x 0.9	4.6	2	0	0	9	0
15	T2 G2 adenocarcinoma	0.6 x 0.4 x 0.4	0.3	0	0	0	7	0
16	No residual tumor	2.7 x 2.2 x 0.8	5.9	0	0	0	7	0
17	T2 G2 adenocarcinoma	3 x 2.6 x 0.4	7.8	0	1	LAR	4	0
18	T3 G2 adenocarcinoma	1.3 x 1.1 x 0.9	1.4	0	0	0	8	0
19	T2 G2 adenocarcinoma	1.7 x 1.7 x 0.3	2.9	0	0	0	5	0
20	TVA LGD	1.1 x 1.0 x 0.3	1.1	0	0	0	5	0
21	T2 G1 adenocarcinoma	1.7 x 0.8 x 0.6	1.4	0	1	LAR	3	0
22	TVA HGD	4.5 x 4.1 x 1.3	18.5	0	0	0	1	0
23	TVA LGD	2.5 x 1.3 x 0.5	3.3	0	0	0	4	0
24	T1 G2 adenocarcinoma	4.5 x 3.8 x 2.5	17.1	0	0	0	2	0
25	TVA HGD	5.8 x 4.3 x 2.4	24.9	0	0	0	2	0
26	TVA HGD	3.4 x 2.8 x 1	9.5	0	1	1	2	0
27	Tis G1 adenocarcinoma	3.7 x 2.3 x 0.3	8.5	0	0	0	1	0
28	T1 G2 adenocarcinoma	3.8 x 2.4 x 1.4	9.1	0	0	0	1	0

Single-Port Robotic Transanal Minimally Invasive Surgery (SPR-TAMIS): another giant leap forward. Davide Ferrari^{1,2}, Thomas Peponis¹, Tommaso Violante^{1,3}, William R. Perry¹, David W. Larson¹, Kevin Behm¹

LPLN Dissection

Left and Right iliac artery and vein

SP in Low Anterior Resection or IPAA

Any Colectomy from a Pfannenstiel

Future is Delivery of Cures

Radical Change

Augmented Reality Shape Sensing Technology

Collaboration and Relationships

Perioperative care

Inpatient to Outpatient Care Reduce Pain, and Reduce Complication Risk

RCT Exparel Tap Block vs Intrathecal 209 patient (98 IT vs 102 Tap)

Figure 2. Participant flow diagram

Improving Outcomes Robotics/MIS, ERAS Treatment, DIET, Fluids 7,103 Colectomy patients Treated with ERAS

Figure 2. Multivariable analysis. Multivariable analysis of univariate demographic and surgical items (p < 0.05) associated with POI. An Odds ratio of >1 indicates increased risk of POI. ASA—American Society of Anaesthesiologists, ERP—enhanced recovery pathway, IV—intravenous, POI—postoperative ileus. Odds ratio, 95% Confidence Interval.

Ordering a Normal Diet at the End of Surgery—Justified or Overhasty?

Fabian Grass ^{1,2}, Martin Hübner ^{2,*}, Jenna K. Lovely ³, Jacopo Crippa ¹, Kellie L. Mathis ¹ and David W. Larson ¹

Figure 1. Outcome. Postoperative complications in patients assigned to the ERP re-alimentation pattern (n = 5862) and patients assigned to an individualized re-alimentation pattern (n = 1241). Any complication: Clavien grade I-V, ERP—enhanced recovery pathway, SSI—surgical site infection, reop—reoperation. * indicates statistical significance (p < 0.05).

Patients with Lowest Risk of Complications

TABLE 4. Occurrence of postdischarge complications by day of discharge group						
Complication, n (%)	POD 0/1 (N = 906)	POD 2 (N = 6825)	POD 3–5 (N = 28,795)	р		
Anastomotic leak	5 (0.6%)	68 (1.0%)	356 (1.2%)	0.05		
Missing, n	7	16	60			
lleus	17 (1.9%)	104 (1.5%)	594 (2.1%)	0.01		
Missing, n	4	4	37			
Readmission	43 (4.8%)	349 (5.1%)	1,670 (5.8%)	0.04		
Reoperation	11 (1.2%)	72 (1.1%)	359 (1.2%)	0.43		
Superficial surgical site infection	16 (1.8%)	108 (1.6%)	663 (2.3%)	<0.01		
Deep surgical site infection	1 (0.1%)	9 (0.1%)	82 (0.3%)	0.05		
Wound disruption	1 (0.1%)	7 (0.1%)	47 (0.2%)	0.48		
Pneumonia	0 (0.0%)	12 (0.2%)	41 (0.1%)	0.41		
Unplanned intubation	0 (0.0%)	6 (0.1%)	27 (0.1%)	0.65		
Venous thromboembolism	0 (0.0%)	24 (0.4%)	147 (0.5%)	0.03		
Progressive renal insufficiency	2 (0.2%)	6 (0.1%)	25 (0.1%)	0.42		
Sepsis or septic shock	1 (0.1%)	50 (0.7%)	233 (0.8%)	0.06		
Urinary tract infection	8 (0.9%)	32 (0.5%)	210 (0.7%)	0.05		
Myocardial infarction	0 (0.0%)	3 (0.0%)	9 (0.0%)	-		
Cardiac arrest requiring CPR	0 (0.0%)	3 (0.0%)	10 (0.0%)	_		
Stroke	0 (0.0%)	0 (0.0%)	0 (0.0%)	-		

Inclusion

ASA class <3

• Age <65

CPR = cardiopulmonary resuscitation; POD = postoperative day.

Is Same-Day and Next-Day Discharge After Laparoscopic Colectomy Reasonable in Select Patients?

> Nicholas P. McKenna, M.D.^{1,2} • Katherine A. Bews, B.A.² • Omair A. Shariq, M.D.¹ Elizabeth B. Habermann, Ph.D., M.P.H.^{1,2} • Kevin T. Behm, M.D.³ • Scott R. Kelley, M.D.³ David W. Larson, M.D., M.B.A.³

Results of SAME DAY Discharge

Table 2. Patient demographics.

	OP-ERP	Standard ERP	P value
	Patients	Patients	
	(n=115)	(n=230)	
Average age (SD), years	49.7 (12.8)	49.7 (12.9)	0.993
Male, n (%)	66 (57.4)	130 (56.5)	0.878
Average BMI (SD), kg/m ²	27.2 (6.3)	27.0 (5.5)	0.695
Obesity (>30 kg/m ²), n (%)	32 (27.8)	61 (26.5)	0.797
ASA class, n (%)			0.382
1	0 (0.0)	3 (1.3)	
2	72 (62.6)	134 (58.3)	
3	43 (37.4)	93 (40.4)	
Current smoker, n (%)	6 (5.2)	12 (5.2)	1.000
Average major comorbidities, mean (SD)	0.7 (0.9)	0.6 (1.0)	0.741
Hypertension, n (%)	29 (25.2)	54 (23.5)	
Heart failure, n (%)	2 (1.7)	3 (1.3)	
Diabetes mellitus, n (%)	8 (7.0)	19 (8.3)	
Chronic kidney disease, n (%)	7 (6.1)	19 (8.3)	
Obstructive sleep apnea, n (%)	14 (12.2)	14 (6.1)	
Coronary artery disease, n (%)	3 (2.6)	11 (4.8)	
History of venous thromboembolism, n (%)	12 (10.4)	27 (11.7)	

	OP-ERP	Standard ERP	P value
	Patients	Patients	
	(n=115)	(n=230)	
Intraoperative fluids, mean (SD), ml	1040.9 (380.2)	1221.2 (422.4)	0.000
Estimated blood loss, mean (SD), mL	20.2 (18.1)	26.8 (39.2)	0.085
Mechanic double stapled anastomosis, n (%)	59 (51.3)	121 (52.6)	0.819
Postoperative analgesia, n (%)			0.000
Intrathecal analgesia	0 (0.0)	133 (57.8)	
Local anesthetics	115 (100.0)	97 (42.2)	
Mean length of stay, days (SD)	0 (0.0)	3.3 (3.7) 🔇	0.000
Postoperative complication (30d), Any, n (%)	17 (14.8)	59 (25.7)	0.022
ED visit (30d), n (%)	7 (6.1)	10 (4.3)	0.482
Readmission (30d), n (%)	12 (10.4)	22 (9.6)	0.798
Average length of readmission, days (SD)	7.6 (5.6)	5.2 (6.3)	0.264
Reoperation (30d), n (%)	4 (3.5)	5 (2.2)	0.474

Table 3. Intraoperative variables and post-operative outcomes.

Same-Day Discharge is Feasible and Safe in Select Patients as Part of an Innovative Enhanced Recovery Pathway Kristen K. Rumer, MD, PhD^a; Jenna K. Lovely, PharmD^b; Amit Merchea, MD^c; David W. Larson, MD, MBA, FACS^a; Mohamed A. Abd El Aziz, MBBCh^a; Jennifer Ellefson, APRN, CNP^a; Adam Amundson, MD^d; Ryan Chadha, MD^e; Robert R. Cima, MD, FACS^a; Sherief Shawki, MD, MBBCh^a; Kevin T. Behm, MD, FACS^a

Conclusion

• Vision: How do You want to Practice 10 years from Now?

Robotics and Perioperative care is a Change Agent

- Will Allow Surgeons
 - Deliver Complex Operations
 - Minimal Means
 - With Outpatient Delivery

Thank You!

