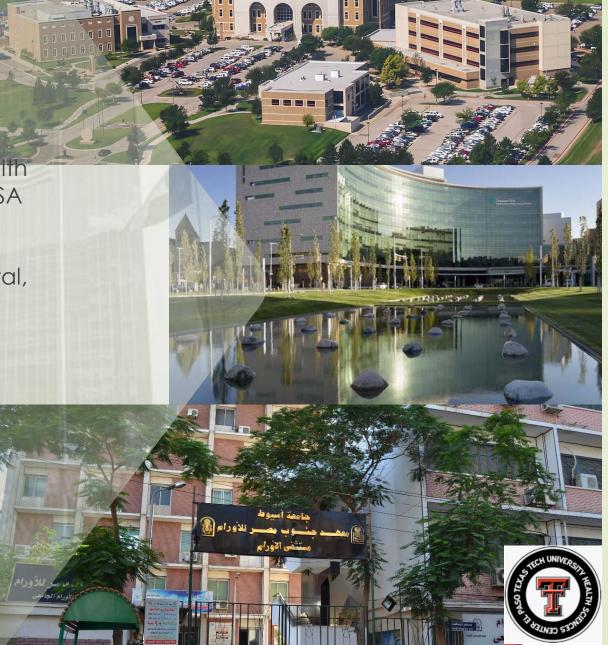


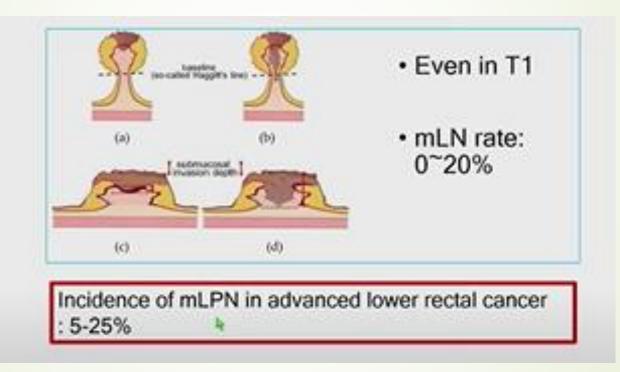
Affiliations


 Texas Tech University Health Science Center, Texas, USA

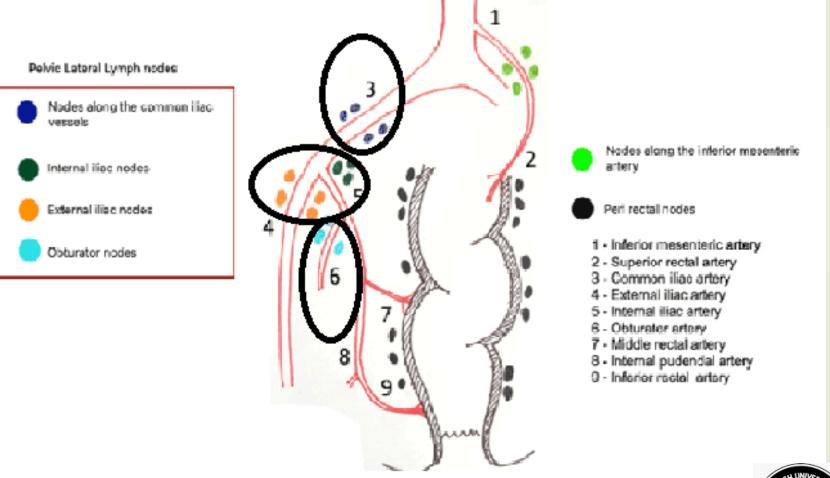
 Houston Methodist Hospital, Texas, USA

 Cleveland Clinic Foundation, Ohio, USA

 South Egypt Cancer Institute, Assiut, Egypt



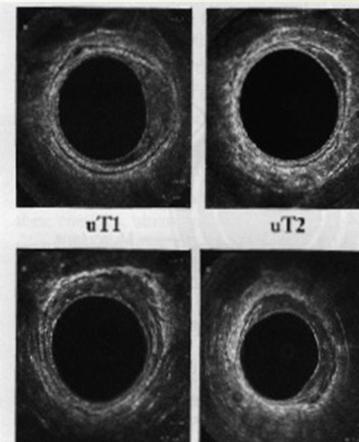
No Disclosures

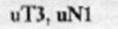


LN Status Even in Early Rectal Cancer

Lateral Pelvic Lymph Nodes

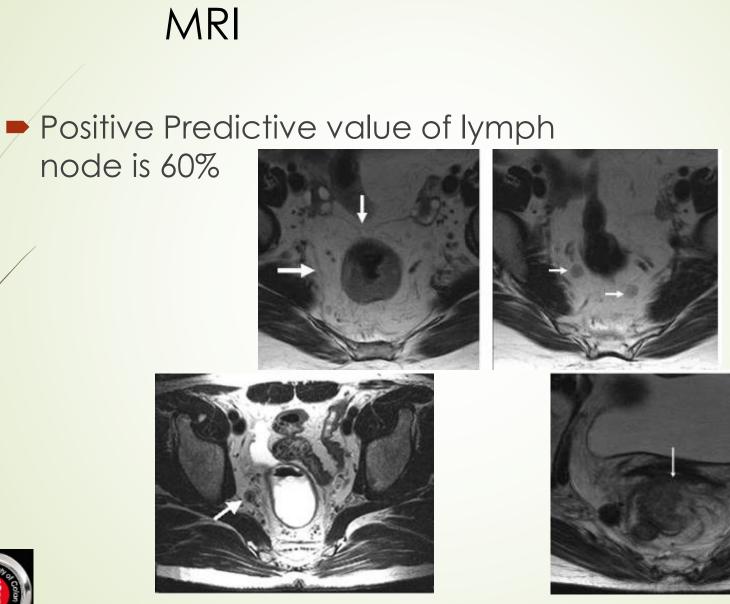
LPLN


- Common Iliac External iliac LNs
- Internal Iliac LNs (regional ?)
- Obturator LNs

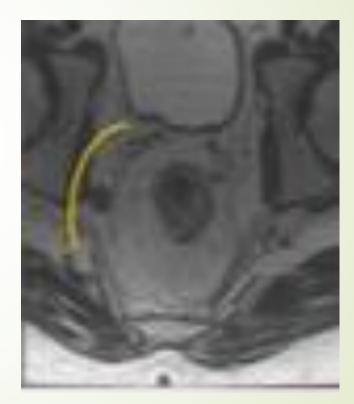


Endorectal Ultrasound ERUS

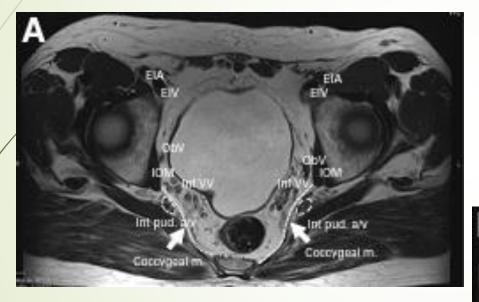
- Accuracy 87% for T stage.
 PPV for perirectal LN about 60 %
- Over staging/ under staging due to inflammation
- Operator dependent

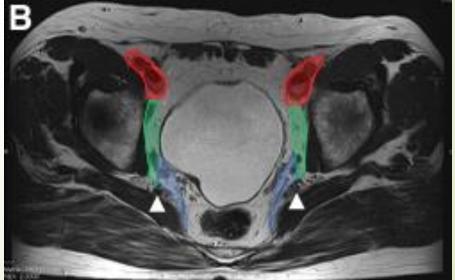


uT3, uN0



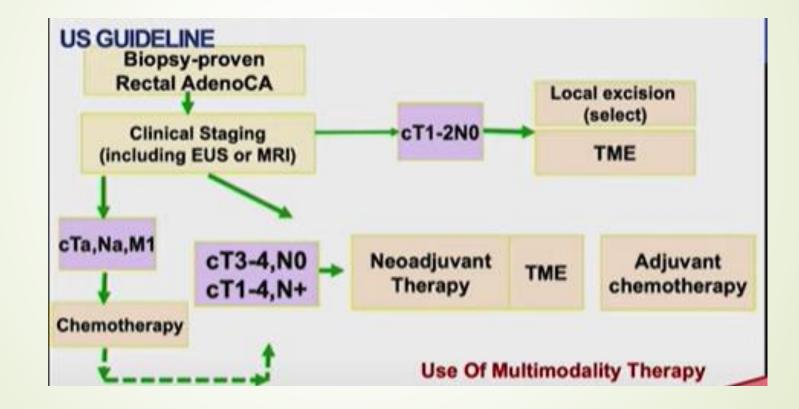
Trakarnsanga A, Gonen M, Shia J et al Ann Surg Oncol 2013


Perirectal vs Lateral LNs



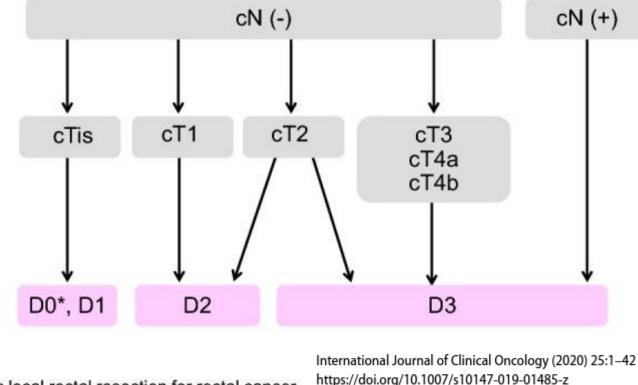
Lateral Pelvic LNs (LPLN)

Current Standard for LN Control In Rectal Cancer


TME Vs TSME

Total mesorectal excision (TME) is a procedure that resects all the mesorectum just above the anal canal . Tumor-specific mesorectal excision (TSME) is a procedure for partially resecting the mesorectum according to the location of the tumor

What about LPLN?


NCCN Guidelines

JSCCR guidelines

Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer

Yojiro Hashiguchi¹⁽ⁱ⁾ · Kei Muro² · Yutaka Saito³ · Yoshinori Ito⁴ · Yoichi Ajioka⁵ · Tetsuya Hamaguchi⁶ · Kiyoshi Hasegawa⁷ · Kinichi Hotta⁸ · Hideyuki Ishida⁹ · Megumi Ishiguro¹⁰ · Soichiro Ishihara¹¹ · Yukihide Kanemitsu¹² · Yusuke Kinugasa¹³ · Keiko Murofushi¹⁴ · Takako Eguchi Nakajima¹⁵ · Shiro Oka¹⁶ · Toshiaki Tanaka¹¹ · Hiroya Taniguchi¹⁷ · Akihito Tsuji¹⁸ · Keisuke Uehara¹⁹ · Hideki Ueno²⁰ · Takeharu Yamanaka²¹ · Kentaro Yamazaki²² · Masahiro Yoshida²³ · Takayuki Yoshino¹⁷ · Michio Itabashi²⁴ · Kentaro Sakamaki²⁵ · Keiji Sano¹ Yasuhiro Shimada²⁶ · Shinji Tanaka²⁷ · Hiroyuki Uetake²⁸ · Shigeki Yamaguchi²⁹ · Naohiko Yamaguchi³⁰ · Hirotoshi Kobayashi³¹ · Keiji Matsuda¹ · Kenjiro Kotake³² · Kenichi Sugihara³³ · Japanese Society for Cancer of the Colon and Rectum

*Includes local rectal resection for rectal cancer

LPLND in Rectal Cancer Outlines

- Why do we care about LPLN?
- What are the indications of LPLN dissection?
- Optimization of benefit vs. Risk
- Potential tools for risk stratifications
- What are the predictors of pathological LPLN?
- Surgical techniques
- Potential risks of LPLND

LPLND in Rectal Cancer Outlines

Why do we care about LPLN?

- What are the indications of LPLN dissection?
- Optimization of benefit vs. Risk
- Potential tools for risk stratifications
- What are the predictors of pathological LPLN?
- Surgical techniques
- Potential risks of LPLND

Dutch TME trial

Patterns of local recurrence in rectal cancer; a study of the Dutch TME trial

M. Kusters^{a,b}, C.A.M. Marijnen^c, C.J.H. van de Velde^{a,*}, H.J.T. Rutten^b, M.J. Lahaye^d, J.H. Kim^f, R.G.H. Beets-Tan^d, G.L. Beets^e

- N=1417
- Despite CRT
- LR was 11 % in RT vs 4.6 % TME + RT
- 20 % of all LR was in LPLN
- Poorer OS

	$\mathbf{RT} + (n = 713)$	$\mathrm{RT}-(n=704)$
Presacral	15 (2.0)	25 (3.6)
Lateral	9 (1.1)	14 (1.9)
Anterior	6 (0.7)	14 (1.9)
Anastomosis	5 (0.7)	19 (2.7)
Perineum	0 (0)	4 (0.6)
Unknown	1 (0.1)	2 (0.3)
TOTAL	36 (4.6)	78 (11.0)

Values in parenthesis are 5-year LR-rates, by competing risks analysis. RT = preoperative radiotherapy.

	$\mathbf{RT} + (n = 36)$	$\operatorname{RT} - (n = 7)$
Presacral	6.7 (1/15)	29.5 (8/25)
Lateral	0 (0/9)	14.4 (2/14)
Anterior	33.3 (2/6)	38.5 (5/14)
Anastomosis	20.0 (1/5)	52.6 (10/19)
Perineum	n.a.	0 (0/4)
Unknown	0 (0/1)	50.0 (1/2)
ALL	11.1 (4/36)	33.0 (25/78)

Values are overall survival percentages at 2 years after LR diagnosis.

Lateral Lymph Node Metastasis Is a Major Cause of Locoregional Recurrence in Rectal Cancer Treated with Preoperative Chemoradiotherapy and Curative Resection

Tae Hyun Kim, MD, Seung-Yong Jeong, MD, Dong Hyun Choi, MD, Dae Yong Kim, MD, Kyung Hae Jung, MD, Sung Ho Moon, MD, Hee Jin Chang, MD, Seok-Byung Lim, MD, Hyo Seong Choi, MD, and Jae-Gahb Park, MD

Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea

- ► N= 366
- Neo CRT + CME
- Locoregional recurrence ~ 8 %
- ~ 80 % of the locoregional recurrence was in the LPLN

TABLE 3. Observed rates of lateral pelvic recurrence

 (LPR) as a function of ypN classification and lateral lymph

 node size

ypN classification	Lateral lymph node (mm)	Observed rate [*] of LPR, n (%)	P value [†]
ypN0 (n = 250)	< 5	3/208 (1.4)	<.001
	5-9.9	1/34 (2.9)	
	≥10	4/8 (50.0)	
ypN + (n = 116)	< 5	4/94 (4.3)	<.001
	5-9.9	5/14 (35.7)	
	≥10	7/8 (87.5)	

* Observed rate = number of patients developed LPR/number of patients at risk (%).

Annals of Surgical Oncology 15(3):729–737 DOI: 10.1245/s10434-007-9696-x

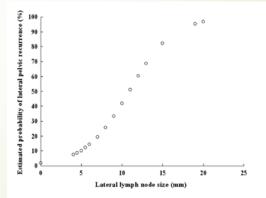
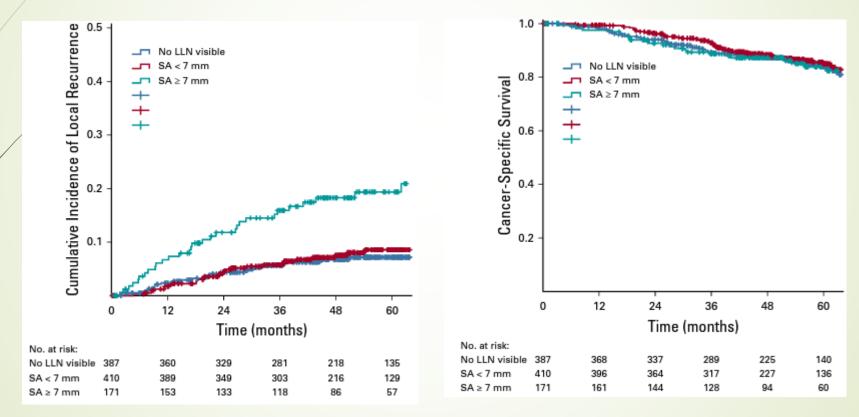


FIG. 2. Estimated probability values of lateral pelvic recurrence according to lateral lymph node size. Probability values are based on logistic regression analysis.

LPLND in Rectal Cancer Outlines

- Why do we care about LPLN?
- What are the indications of LPLN dissection?
- Optimization of benefit vs. Risk
- Potential tools for risk stratifications
- What are the predictors of pathological LPLN?
- Surgical techniques
- Potential risks of LPLND


Atsushi Ogura, MD^{1,2,3}; Tsuyoshi Konishi, MD^{3,4}; Chris Cunningham, MD⁵; Julio Garcia-Aguilar, MD, PhD⁴; Henrik Iversen, MD, PhD⁶; Shigeo Toda, MD⁷; In Kyu Lee, MD, PhD⁸; Hong Xiang Lee⁸; Keisuke Uehara, MD, PhD²; Peter Lee, MS¹⁰; Hein Putter¹; Cornelis J.H. van de Velde, MD, PhD¹; Geerard L. Beets, PhD¹¹; Harm J.T. Rutten, MD, PhD^{12,13}; and Miranda Kusters, PhD^{12,14}; on behalf of the Lateral Node Study Consortium

J Clin Oncol 37:33-43.

- Multicenter East & West
- Study of Patients With Low cT3/4 Rectal Cancer
- ▶ N= 1216
- < 8 cm from anal verge</p>
- LPLND done in 142 patients (12%)
- 7 mm LNs pretreatment cut off

Atsushi Ogura, MD^{1,2,3}; Tsuyoshi Konishi, MD^{3,4}; Chris Cunningham, MD⁵; Julio Garcia-Aguilar, MD, PhD⁴; Henrik Iversen, MD, PhD⁶; Shigeo Toda, MD⁷; In Kyu Lee, MD, PhD⁸; Hong Xiang Lee⁸; Keisuke Uehara, MD, PhD⁷; Peter Lee, MS¹⁰; Hein Putter¹; Cornelis J.H. van de Velde, MD, PhD¹; Geerard L. Beets, PhD¹¹; Harm J.T. Rutten, MD, PhD^{12,13}; and Miranda Kusters, PhD^{12,14}; on behalf of the Lateral Node Study Consortium

Atsushi Ogura, MD^{1,2,3}; Tsuyoshi Konishi, MD^{3,4}; Chris Cunningham, MD⁵; Julio Garcia-Aguilar, MD, PhD⁴; Henrik Iversen, MD, PhD⁶; Shigeo Toda, MD⁷; In Kyu Lee, MD, PhD⁸; Hong Xiang Lee⁸; Keisuke Uehara, MD, PhD²; Peter Lee, MS¹⁰; Hein Putter¹; Cornelis J.H. van de Velde, MD, PhD¹; Geerard L. Beets, PhD¹¹; Harm J.T. Rutten, MD, PhD^{12,13}; and Miranda Kusters, PhD^{12,14}; on behalf of the Lateral Node Study Consortium

Local recurrence 20% in TME only group Vs 5 % in LPLND group

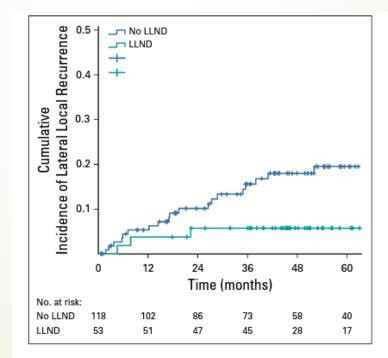
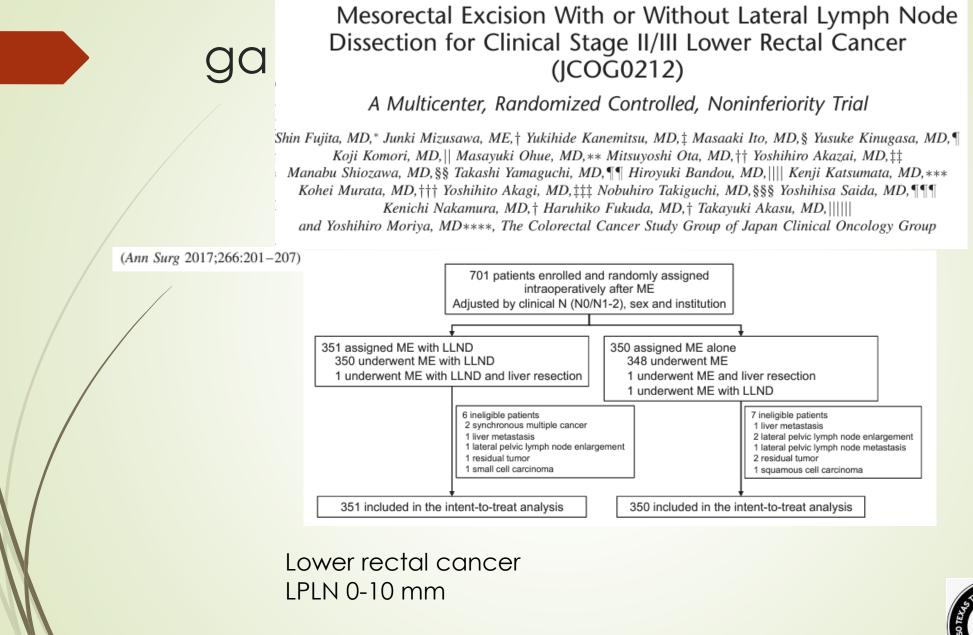


FIG 2. Effect of lateral lymph node dissection (LLND) on lateral local recurrence in patients with a short axis \geq 7 mm on pretreatment magnetic resonance imaging in patients who received (chemo)radiotherapy.


Atsushi Ogura, MD^{1,2,3}; Tsuyoshi Konishi, MD^{3,4}; Chris Cunningham, MD⁵; Julio Garcia-Aguilar, MD, PhD⁴; Henrik Iversen, MD, PhD⁶; Shigeo Toda, MD⁷; In Kyu Lee, MD, PhD⁸; Hong Xiang Lee⁸; Keisuke Uehara, MD, PhD²; Peter Lee, MS¹⁰; Hein Putter¹; Cornelis J.H. van de Velde, MD, PhD¹; Geerard L. Beets, PhD¹¹; Harm J.T. Rutten, MD, PhD^{12,13}; and Miranda Kusters, PhD^{12,14}; on behalf of the Lateral Node Study Consortium

No benefits of sampling

SA Before (C)RT	No.	5-Year LLR, %	Р	5-Year LR, %	Р	5-Year DR, %	Р	5-Year CSS, %	Р
No LLN visible			.777		.597		.311		.419
No LLND	383	2.1		7.2		22.9		83.7	
LLND	4	0		0		0		100	
SA < 7 mm			.621		.243		.132		.344
No LLND	369	4.9		9.2		30.1		84.4	
LLND	41	2.5		2.5		15.8		91.5	
$SA \geq 7 \ mm$.042		.005		.028		.032
No LLND	118	19.5		25.6		30.8		79.4	
LLND	53	5.7		5.7		13.5		94.1	

Abbreviations: (C)RT, (chemo)radiotherapy; CSS, cancer-specific survival; DR, distant recurrence; LLN, lateral lymph node; LLND, lateral lymph node dissection; LLR, lateral local recurrence; LR, local recurrence; MRI, magnetic resonance imaging, SA, short axis.

Mesorectal Excision With or Without Lateral Lymph Node Dissection for Clinical Stage II/III Lower Rectal Cancer (JCOG0212)

A Multicenter, Randomized Controlled, Noninferiority Trial

 Shin Fujita, MD,* Junki Mizusawa, ME,† Yukihide Kanemitsu, MD,‡ Masaaki Ito, MD,§ Yusuke Kinugasa, MD,¶ Koji Komori, MD,|| Masayuki Ohue, MD,** Mitsuyoshi Ota, MD,†† Yoshihiro Akazai, MD,‡‡
 Manabu Shiozawa, MD,§§ Takashi Yamaguchi, MD,¶¶ Hiroyuki Bandou, MD,|||| Kenji Katsumata, MD,*** Kohei Murata, MD,††† Yoshihito Akagi, MD,‡‡‡ Nobuhiro Takiguchi, MD,§§§ Yoshihisa Saida, MD,¶¶¶ Kenichi Nakamura, MD,† Haruhiko Fukuda, MD,† Takayuki Akasu, MD,|||||
 and Yoshihiro Moriya, MD****, The Colorectal Cancer Study Group of Japan Clinical Oncology Group

	$\begin{array}{l} ME \ with \\ LLND \ (n=351) \end{array}$	ME (n = 350)	Р
Anastomosis	7	2	
Anastomosis and central pelvis	0	1	
Central pelvis	11	12	
Central and lateral pelvis	3	2	
Lateral pelvis	4	23	
Definite residual tumor*	1	4	
Total (%)	26 (7%)	44 (13%)	0.02

JSCCR guidelines

- Regarding the clinical value of lateral lymph node dissection in cases without obvious lateral lymph node metastasis, the JCOG0212 study examined the noninferiority of the mesorectal excision (ME) alone to the mesorectal excision with lateral lymph node dissection (ME + LLND) with the primary endpoints of relapse-free survival.
- This study was conducted for patients with no lateral lymph nodes. As a result, the non-inferiority of ME alone to ME + LLND was not statistically
- The frequency of local recurrence in the ME + LLND group was significantly lower than that in the ME alone group (7.4% vs. 12.6%).

JSCCR guidelines

- On the other hand, the relapse-free survival curves of the two groups were very similar, and there was no significant difference in either the overall survival rate or local recurrence-free survival rate as a secondary endpoint. Thus, the survival benefit of lateral lymph node dissection was limited in cases without lateral lymph node enlargement.
- Taken together, the omission of lateral lymph node dissection is not uniformly recommended, even for cases without the enlargement of lateral pelvic lymph nodes, from the viewpoint of local control.
- The application of lateral lymph node dissection should be determined in individual patients by comprehensively considering the balance between the expected benefits in terms of local control and survival improvement and the surgical risk and postoperative dysfunction.

Can Chemoradiation Allow for Omission of Lateral Pelvic Node Dissection for Locally Advanced Rectal Cancer?

MIN JU KIM, MD,¹ TAE HYUN KIM, MD,¹ DAE YONG KIM, MD,¹ SUN YOUNG KIM, MD,¹ JI YEON BAEK, MD,¹ HEE JIN CHANG, MD,¹ SUNG CHAN PARK, MD,¹* JI WON PARK, MD,^{1,2} AND JAE HWAN OH, MD¹

- N= 900
- CRT + TME
- LR: 65 (7.2%)
- LPLN 42 (64.5%), No DM in 20 (~50%)

LPLND in Rectal Cancer Outlines

- Why do we care about LPLN?
- What are the indications of LPLN dissection?
- Optimization of benefit vs. Risk
- Potential tools for risk stratifications
- What are the predictors of pathological LPLN?
- Surgical techniques
- Potential risks of LPLND

Predictive factors of pathological lateral pelvic lymph node metastasis in patients without clinical lateral pelvic lymph node metastasis (clinical stage II/III): The analysis of data from the clinical trial (JCOG0212)

Koji Komori ^{a, *}, Shin Fujita ^b, Junki Mizusawa ^c, Yukihide Kanemitsu ^d, Masaaki Ito ^e, Akio Shiomi ^f, Masayuki Ohue ^g, Mitsuyoshi Ota ^h, Yoshihiro Akazai ⁱ, Manabu Shiozawa ^j, Takashi Yamaguchi ^k, Hiroyuki Bandou ^l, Kenji Katsumata ^m, Yusuke Kinugasa ⁿ, Yasumasa Takii ^o, Takayuki Akasu ^p, Yoshihiro Moriya ^q, Colorectal Cancer Study Group of Japan Clinical Oncology Group

European Journal of Surgical Oncology 45 (2019) 336-340

Size of lateral pelvic lymph node						
$<5 \mathrm{mm}(n=286)$	15 (5.2%)	0.001				
\geq 5 mm(n = 42)	9 (21.4%)					

Table 2

Summary of the reported risk factors of pathological lateral pelvic lymph node metastasis.

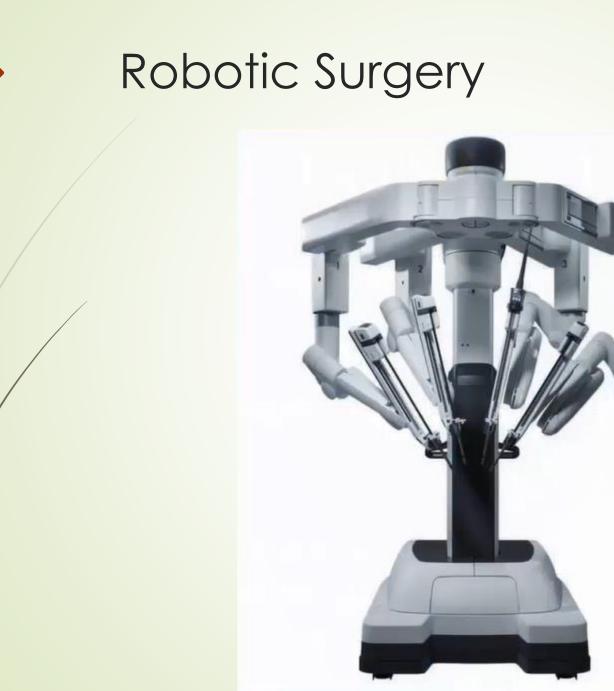
Author	Years	Number of	Number of patients with pathological lateral pelvic lymph node	Preoperative factors				Postoperative factors		
]	patients		Age	Gender	Tumor location	Size of lateral pelvic lymph node(cutoff)	рТ	pN	Histological grade
Ueno et al.	2005	237	41 (17.3%)			0	NA		0	0
Sugihara et al.	2006	930	129 (13.9%)		\bigcirc (female)	0	NA		0	
Kobayashi et al.	2009	784	117 (14.9%)		\bigcirc (female)		NA		0	0
Fujita et al.	2009	210	47 (22.4%)			0	○(5 mm)		0	0
Tan et al.	2010	1046	113 (10.8%)		\bigcirc (female)		NA	0	0	0
Akiyoshi et al.	2012	5789	655 (11.3%)		\bigcirc (female)		NA	0	0	0
Kinugasa et al.	2013	450	59 (13.1%)				NA		0	
Akiyoshi et al.	2015	279	77 (27.6%)		\bigcirc (female)		○(8 mm)		0	
Nagayoshi et al.	2016	90	14 (15.6%)				NA		0	
Ogawa et al.	2016	230	39 (17.0%)	○(<64)			○(5 mm)		0	0
Present study (JCOG0212)		328	24 (7.3%)	○(<60)		0	○(5 mm)		0	0

JSCCR guidelines

- It has been reported that the incidence of lateral lymph node metastasis remains high after preoperative chemoradiation therapy if the lateral lymph nodes are enlarged before treatment. Thus, even in cases in which preoperative chemoradiotherapy is performed, the omission of lateral lymph node dissection is not recommended
- A propensity score matching analysis of pT3/T4 lower rectal cancer showed that the 5-year overall survival rate of patients with lateral lymph node dissection was better than that of those without dissection (68.9% vs. 62.0%)

LPLND in Rectal Cancer Outlines

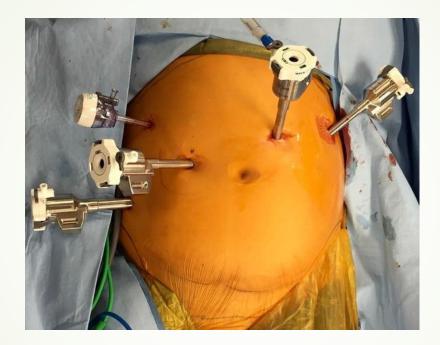
- Why do we care about LPLN?
- What are the indications of LPLN dissection?
- Optimization of benefit vs. Risk
- Potential tools for risk stratifications
- What are the predictors of pathological LPLN?
- Surgical techniques
- Potential risks of LPLND


Open vs Laparoscopic vs Robotic LPLND

Laparoscopic and robotic lateral lymph node dissection for rectal cancer

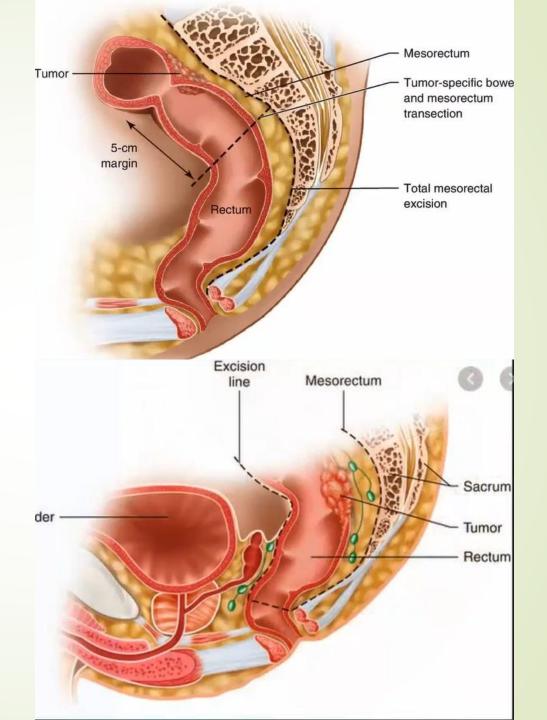
Ryota Nakanishi¹ · Tomohiro Yamaguchi¹ · Takashi Akiyoshi¹ · Toshiya Nagasaki¹ · Satoshi Nagayama¹ · Toshiki Mukai¹ · Masashi Ueno¹ · Yosuke Fukunaga¹ · Tsuyoshi Konishi¹

- MIS approach has the advantages of less bleeding
- Better surgical view of the pelvic anatomy
- Precise autonomic N preservation
- Less postoperative genitourinary dysfunctions

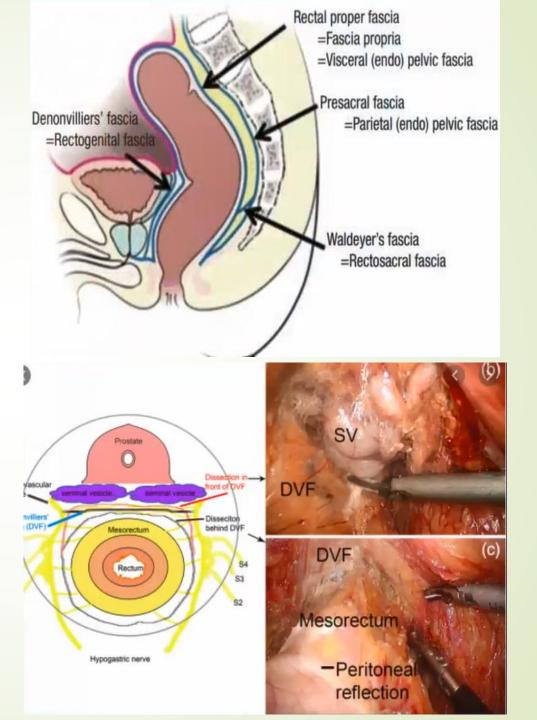


Robotic vs Laparoscopic

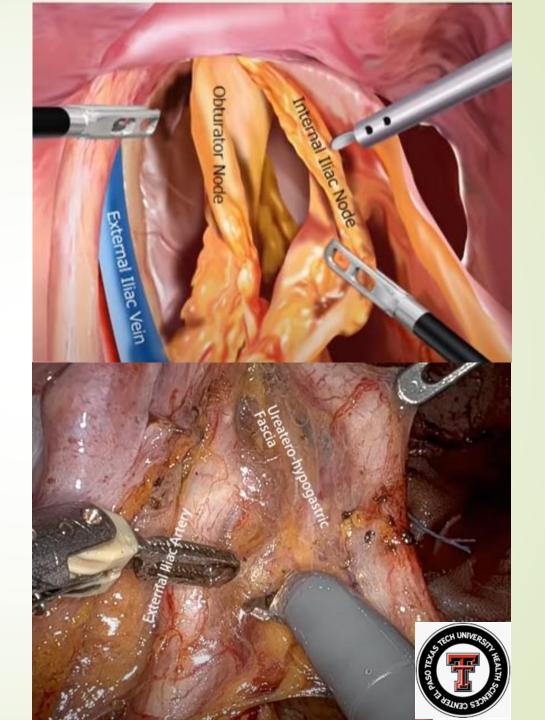
- Image magnification
- Stable camera platform
- Bi-ociular vision; true 3 D image
- Intracorporeal suturing
- Additional functional arm
- Fluorescence



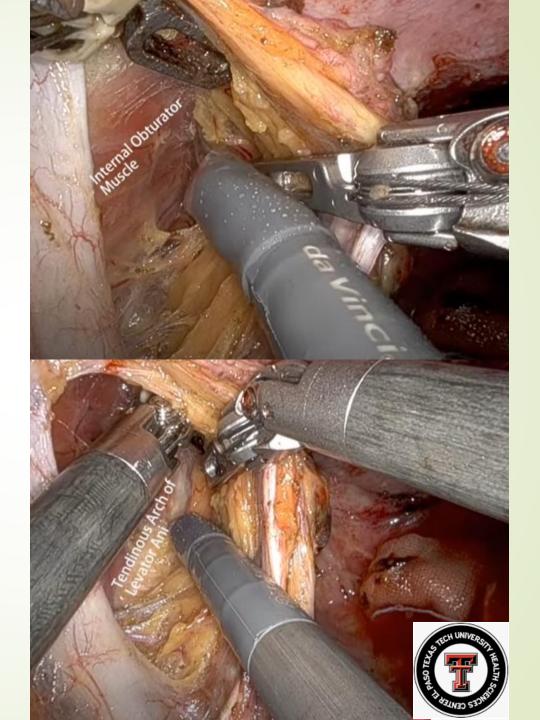
Robotic ports placement


TME

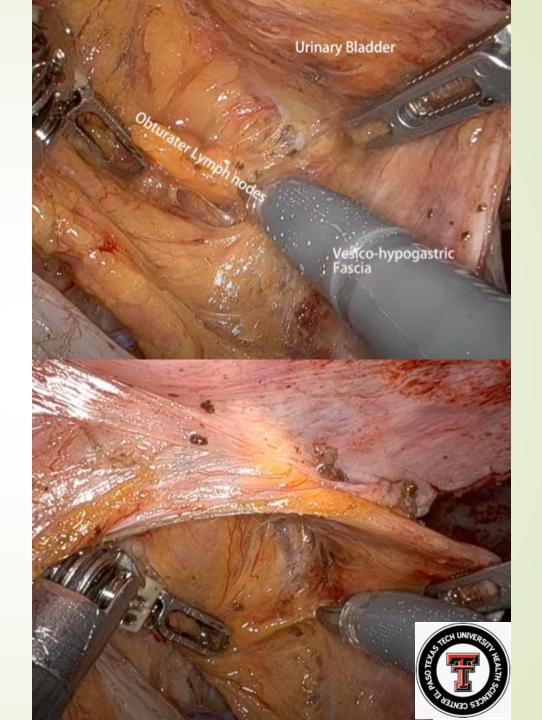
Anterior and posterior dissection

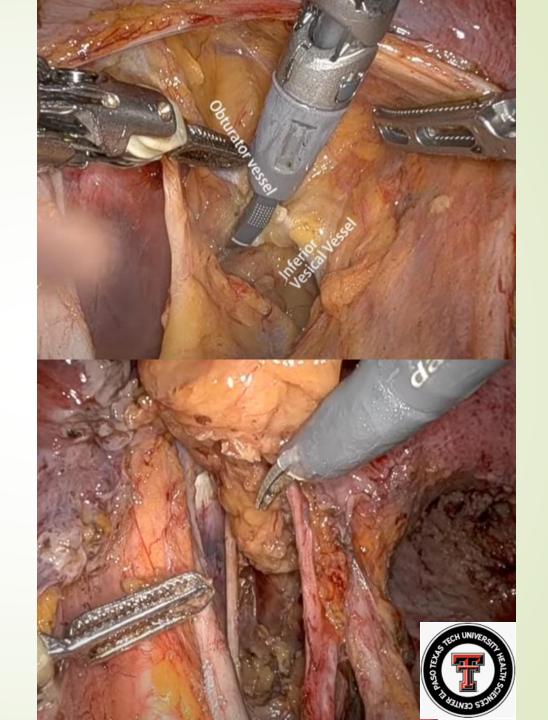


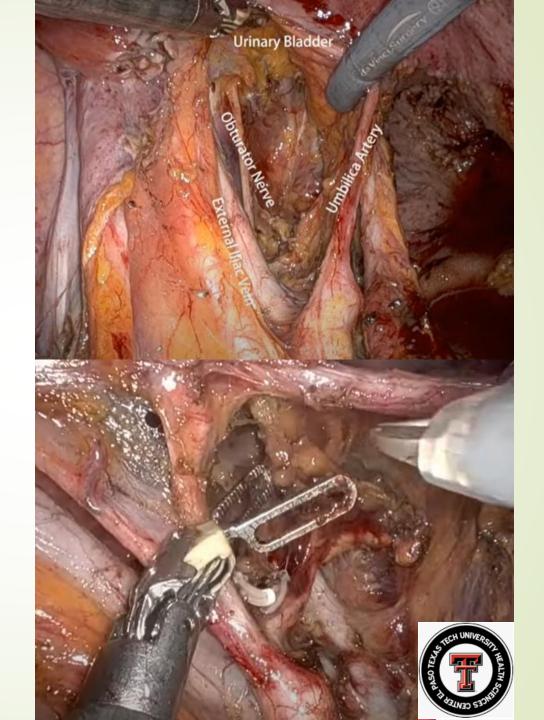
Anterior peritoneal reflection

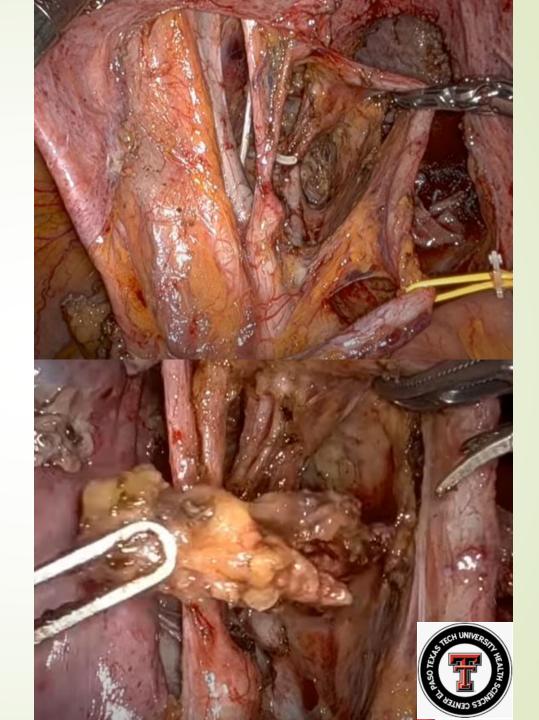


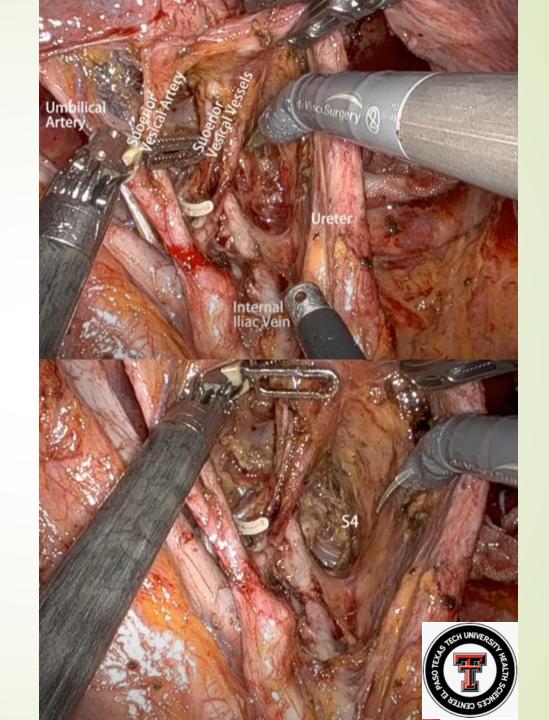
.PLND


External Iliac LN Dissection


Obturator LN Dissection


Obturator LN Dissection


Obturator LN Dissection


Internal lleac **IN** Dissection

Internal ileac LN Dissection

Internal lleac LA Dissection

LPLND in Rectal Cancer Outlines

- Why do we care about LPLN?
- What are the indications of LPLN dissection?
- Optimization of benefit vs. Risk
- Potential tools for risk stratifications
- What are the predictors of pathological LPLN?
- Surgical techniques
- Potential risks of LPLND

1/9/2023

Risks of LPLND

Lancet Oncol 2012; 13: 616–21

Published Online

2045(12)70158-4

May 15, 2012 DOI:10.1016/S1470Postoperative morbidity and mortality after mesorectal excision with and without lateral lymph node dissection for clinical stage II or stage III lower rectal cancer (JCOG0212): results from a multicentre, randomised controlled, non-inferiority trial

Dr Shin Fujita MD^a ♀ ⊠, Takayuki Akasu MD^a, Junki Mizusawa MSc^b, Norio Saito MD^c, Yusuke Kinugasa MD^d, Yukihide Kanemitsu MD^e, Masayuki Ohue MD^f, Shoichi Fujii MD^g, Manabu Shiozawa MD^h, Takashi Yamaguchi MDⁱ, Yoshihiro Moriya MD^a, on behalf of the Colorectal Cancer Study Group of Japan Clinical Oncology Group

- N = 701 (TME=350 Vs TME plus LPLND = 351)
- 7 % of patients with lower rectal cancer without clinical LPLN enlargement had LPLN metastasis

1/9/2023

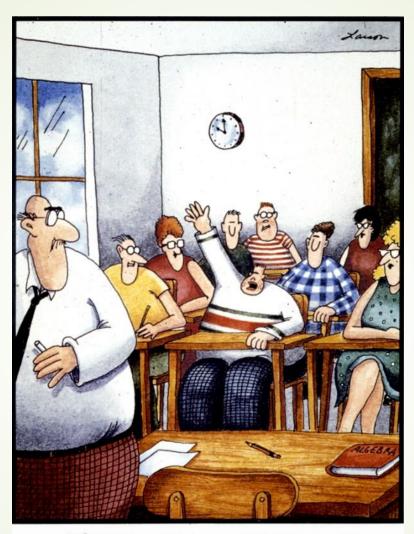
Postoperative morbidity and mortality after mesorectal excision with and without lateral lymph node dissection for clinical stage II or stage III lower rectal cancer (JCOG0212): results from a multicentre, randomised controlled, non-inferiority trial

Lancet Oncol 2012; 13: 616-21 Published Online May 15, 2012 DOI:10.1016/S1470-2045(12)70158-4

Dr Shin Fujita MD^a A 🖾 , Takayuki Akasu MD^a, Junki Mizusawa MSc^b, Norio Saito MD^c, Yusuke Kinugasa MD^d, Yukihide Kanemitsu MD^e, Masayuki Ohue MD^f, Shoichi Fujii MD^g, Manabu Shiozawa MD^h, Takashi Yamaguchi MDⁱ, Yoshihiro Moriya MD^a, on behalf of the Colorectal Cancer Study Group of Japan Clinical Oncology Group

) 6	34 (81%) 34 (18%) 2 (<1%)	
) 6	54 (18%)	
r		
)	2 (<1%)	
		\frown
-429) 25	4 (210-307)	<0.0001
		\succ
900) 33	37 (170–566)	:0.0001
		\smile
	900) 33	900) 337 (170-566)

Any grade 3–4 complication†	76 (22%)	6 (16%)	0.07
Anastomotic leakage‡	18 (6%)	13 (5%)	0.46
Urinary retention	18 (5%)	10 (3%)	0.18
Infection with normal absolute neutrophil count	16 (5%)	17 (5%)	0.86
Haemorrhage with surgery	13 (4%)	5 (1%)	0.09
Wound infection	10 (3%)	8 (2%)	0.81
Pelvic abscess	6 (2%)	2 (<1%)	0.29
Bowel obstruction	4(1%)	3 (<1%)	1.00
Other§	12 (3%)	9 (3%)	0.66
/E=mesorectal excision. LLND=lateral h hstitute-Common Toxicity Criteria Vers /E=284). \$Other=fever, melaena, fistul	ion 2-0. ‡Denominator is pat	ients with anastomosis (ME	


- Increased operative time
- Increased blood loss
- Higher complications rate in the LPLND group but statistically insignificant

1/9/2023

Summary

- LPLN recurrence is a major cause of local recurrence in rectal cancer
- LPLN recurrence is associated with poorer prognosis
- High resolution MRI used for risk stratification
- Pretreatment LPLN > 7 mm
- Post-treatment LPLN > 5 mm
- Minimally invasive robotic/laparoscopic approach has improved surgical morbidity even after preop CRT

"Mr. Osborne, may I be excused? My brain is full."

Any Questions?

TartooCar