

Intestinal transplantation: surgical techniques and rejection

Ahmed Farag^{1,2}, Ali Elshewy¹, Rodrigo Vianna², Tarek Abdellatif¹.

¹Department of Surgery, School of Medicine, Zagazig University, Egypt.

²Miami Transplant Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA.

By

Ahmed Mohamed Abdelghany Farag Assistant Lecturer of General Surgery

Management of IF

History of Visceral Tx

Visceral (intestinal) Transplantation (Tx)

Types

Isolated small bowel (ISB) Tx

Intestine

Liver-intestine (LI) Tx

Intestine Liver

Multivisceral (MV) Tx

Full MV Tx

Intestine

Liver

Stomach

Duodenum

Pancreas

Modified MV Tx

Intestine

Stomach

Duodenum

Pancreas

Visceral Tx

Protocols of immunosuppression

	Induction agent (s)		Maintenance agent (s)
Protocol 1	• Daclizumab.	•	Tacrolimus. Steroids.
Protocol 2	 rATG (rabbit antithymocyte globulin). Rituximab. 	•	Tacrolimus.
Protocol 3	• Alemtuzumab.	•	Tacrolimus.

Setting of the study

GI Transplant Division, Miami Transplant Institute/Jackson Memorial Hospital, University of Miami Miller School of Medicine, Miami, Florida, USA

Subjects

Criteria of the recipients

Inclusion criteria

Failure of TPN

- Liver failure.
- Thrombosis of central veins.
- Central line-related systemic sepsis.
- Dehydration.

Conditions associated with early death

- Desmoid tumor.
- Ultra-SBS.
- Congenital mucosal disorders.
- IF with high morbidity.

Exclusion criteria

- Significant cardiopulmonary insufficiency
- Incurable malignancy
- Intraabdominal or systemic infections
- Severe immune deficiency syndromes

TECHNICAL DESIGN

Subjects

Criteria for the donors

Inclusion criteria

- Cadaveric (Brain dead, heart beating).
- Younger than 50 years old.
- Identical and compatible ABO-blood grouping.
- BMI is less than 28 kg/m².
- ICU stay is ≤5 days.
- CIT is no longer than 9 hours.
- Good liver function, if MV allograft is being procured.
- Serum sodium level is not higher than 155 mEq/L.
- CMV and EBV positive or negative donors.

Exclusion Criteria

• Extended criteria donors.

TECHNICAL DESIGN

Tools of the study

49 Patients

13 Patients

Group (I)

ISB transplant recipients

- SBS.
- Congenital motility disorders.
- Enterocyte absorptive capacity deficiency.
- Gardner's syndrome.

36 Patients

Group (II)

Full MV transplant recipients

PN associated liver failure

+

- SBS.
- Complex abdominal pathology.

OPERATIONAL DESIGN

Surgical techniques

ISB Tx (n=13)

OPERATIONAL DESIGN

Surgical techniques

ISB Tx (n=13)

OPERATIONAL DESIGN

Surgical techniques

ISB Tx (n=13)

OPERATIONAL DESIGN

Surgical techniques

ISB Tx (n=13)

OPERATIONAL DESIGN

Surgical techniques

ISB Tx (n=13)

OPERATIONAL DESIGN

Surgical techniques

Full MV Tx (n=36)

OPERATIONAL DESIGN

Surgical techniques

Full MV Tx (n=36)

OPERATIONAL DESIGN

Surgical techniques

Full MV Tx (n=36)

OPERATIONAL DESIGN

Surgical techniques

Full MV Tx (n=36)

OPERATIONAL DESIGN

Surgical techniques

Full MV Tx (n=36)

OPERATIONAL DESIGN

Surgical techniques

Full MV Tx (n=36)

OPERATIONAL DESIGN

Surgical techniques

Full MV Tx (n=36)

OPERATIONAL DESIGN

Surgical techniques

Full MV Tx (n=36)

OPERATIONAL DESIGN

Surgical techniques

Full MV Tx (n=36)

PATIENTS AND METHODS

OPERATIONAL DESIGN

Immunosuppression protocol

Induction immunosuppression

- rATG: 2 mg/kg X5.
- Steroids (Solu-Medrol) in a tapering mode.
- · Rituximab.
- Basiliximab.

Maintenance immunosuppression

- Tacrolimus.
- Everolimus.

PATIENTS AND METHODS

OPERATIONAL DESIGN

Graft monitoring

- Frequent endoscopies.
- Serum level of citrulline.
- Clinical examination and hand-held Doppler US.

Recipient Baseline Variables	ISB Tx (n=13) Mean ± SE	Full MV Tx (n=36) Mean ± SE	P-value
A. Age (year)	31.9 ± 5.3	26.9 ± 4.1	0.50
1. Adult (≥18 year)	69.2% (n=9/13)	50.0% (n=18/36)	0.23
B. Gender			0.23
1. Female	46.2% (n=6/13)	50.0% (n=18/36)	
2. Male	53.8% (n=7/13)	50.0% (n=18/36)	
C. Race/Ethnicity			0.82
1. White (non-Hispanic)	53.8% (n=7/13)	52.8% (n=19/36)	
2. Black (non-Hispanic)	23.1% (n=3/13)	16.7% (n=16/36)	
3. Hispanic	23.1% (n=3/13)	30.6% (n=11/36)	
D. Pre-transplant BMI	21.2 ± 1.1	21.8 ± 1.0	0.69
E. ABO-Blood Group			0.25
1. A	15.4% (n=2/13)	33.3% (n=12/36)	
2. B	23.1% (n=3/13)	8.3% (n=3/36)	
3. O	61.5% (n=8/13)	58.3% (n=21/36)	
F. Type of Transplant			
1. Primary Transplant	84.6% (n=11/13)	91.7% (n=33/36)	0.47
2. Secondary Transplant	15.4% (n=2/13)	8.3% (n=3/36)	

	Other Baseline Variables	ISB Tx (n=13) Mean ± SE	Full MV Tx (n=36) Mean ± SE	P-value
	A. Donor Age (years)	15.4 ± 3.7	18.3 ± 2.8	0.58
	1. Adult (≥18 years)	23.1% (n=3/13)	52.8% (n=19/36)	0.06
	B. Donor BMI (Kg/m²)	20.6 ± 0.9	20.9 ± 0.7	0.43
	C. Ischemia times			
	1. Cold ischemia time (CIT) (hours)	6.7 ± 0.32	7.8 ± 0.27	0.04
	2. Warm ischemia time (WIT) (minutes)	25.2 ± 1.5	29.4 ± 1.4	0.11
	D. T/B Cell Cross-match			0.76
	1. T-/B-	83.3% (n=10/12)	85.7% (n=30/35)	
	2. T-/B+	0% (n=0/12)	2.9% (n=1/35)	
/	3. T+/B+	16.7% (n=2/12)	11.4% (n=4/35)	
	E. Abdominal Wall Closure			0.68
	1. Primary Abdominal Wall Closure	*53.8% (n=7/13)	47.2% (n=17/36)	
	2. Vacuum Assisted Closure	46.2% (n=6/13)	52.8 (n=19/36)	
	F. Stoma			0.005
	1. Ileostomy	53.8 (n=7/13)	13.9% (n=5/36)	
	2. Colostomy	38.5% (n=5/13)	36.1% (n=13/36)	
	3. No Stoma	7.7% (n=1/13)	50.0% (n=18/36)	

Length of hospital stay and readmissions

Rejection

Kaplan-Meier curve: any biopsy-proven acute rejection free survival by the type of transplant (ISB Tx vs. full MV Tx)

Rejection

• Median time to develop a biopsy proven acute rejection (BPAR)

2.4 (0.6-15.7) months ISB Tx

***** 0.7 (0.1-8.4) months Full MV Tx

Sites of first rejection

Site of first rejection	ISB Tx (n=9)	Full MV Tx (n=10)
Small bowel	n=9	n=7
Colon	n=4	n=6
Colostomy		n=2
Stomach		n=2

Grades of rejection

Grade of BPAR	ISB Tx (n=9)	Full MV Tx (n=10)
Grade I	n=7	n=4
Grade II		n=4
Grade III	n=2	n=2

Rejection

Kaplan-Meier curve: severe rejection free survival by the type of transplant (ISB Tx vs. full MV Tx)

Rejection

- Median time to develop an episode of severe rejection
 - **❖** 5.7 (1.5-9.9) months ISB Tx
 - ***** 2 (1.5-2.4) months Full MV Tx

• Sites of severe rejection

ISB Tx Both the small bowel and the colon in the 2 cases.

Full MV Tx The small bowel in one case and the colon in the other case.

Rejection

Stepwise Cox regression results for the hazard rate of developing BPAR during the first 36 post-transplant months (n=49, 19 events)

	Baseline Variable	Univariable P-value	Multivariable Model	
			P-value	Coeff ± SE
	Transplant Type (ISB Tx)	0.01	0.01	1.085 ± 0.463
/	Systemic Drainage	0.004		
	Citrulline Level at 1st month	0.05		

Cox regression model for the hazard rate of developing BPAR during the first 36 months post-transplant (49 cases, 19 events) that includes the 2 variables transplant type, and citrulline level at the 1st month (n=43, 17 events)

Baseline Variable	Multivariable Model	
	P-value	Coeff ± SE
Transplant Type (ISB transplant)	0. 09	0.960 ± 0.578
Citrulline Level at 1st month	0.46	0.022 ± 0.030

RESULTS Graft failure

- Causes of intestinal graft failure among ISB transplant recipients
 - **Rejection** (n=1).
 - **❖** Volvulus (n=1).
- Causes of intestinal graft failure among the full MV recipients
 - ***** Rejection (n=2).
 - ***** Enterocutaneous fistulas (n=1).

RESULTS Patient survival

Kaplan Meier curve: patient survival during the first 36 post-transplant months by the type of transplant (ISB Tx vs. full MV Tx)

RESULTS Patient survival

Full MV transplant recipients

- Median time to patient death within the first 3 post-transplant 1.3 (0-2.7) months months
- Median time to patient death during the first 36 months

2.7 (0-7.4) months

- Causes of patient death
 - □ GVHD (n=4).
 - \square Sepsis (n=2).
 - \square Intra-operative coagulopathy (n=1).
 - \square Intra-operative cardiac thrombosis (n=1).
 - □ Superior vena cava syndrome (n=1).
 - \square Rejection (n=1).

RESULTS Graft survival

Kaplan Meier curve: freedom from graft failure or patient death from any cause (death-uncensored graft survival) during the first 36 post-transplant months by the type of transplant (ISB Tx vs. full MV Tx)

CONCLUSION

- The results of our study support the worldwide agreement about the advantage of the visceral Tx either ISB Tx or full MV Tx in the management of patients with chronic IF.
- Early surgical intervention provides an efficient solution, compatible survival rate and satisfactory quality of life in the management of chronic IF in patients who cannot tolerate the life-long PN.

Thank you