

Molecular biology of colorectal cancer

Yorkshire Cancer Research Centenary Professor of Pathology University of Leeds, UK

Phil Quirke

Pathology, Anatomy and Tumour Biology Leeds Institute of Cancer and Pathology

Rapid pace of molecular change

UNIVERSITY OF LEEDS

Sequencing changes

2000

100,000 Genomes Project

"It is crucial that we continue to push the boundaries and this new plan will mean we are the first country in the world to use DNA codes in the mainstream of the health service" The Rt Hon David Cameron MP The Prime Minister 10 December 2012

Pathology, Anatomy and Tumour Biology

Which technologies should we use?

- Genomics- DNA/RNA
- Proteomics
- Metabolome
- Pathways
- Phenotype
- Test
 - Fit for purpose
 - Cost
 - Changing

Molecular changes in bowel cancer

DNA

- Mutations driver and passenger
- Amplifications
- Deletions
- Chromosomal instability,
- Microsatellite instability
- Fusion genes
- Methylation

Chromosomal position

Increasing complexity with time UNIVERSITY OF LEEDS

Increasing genomic instability Classical adenomas, Serrated pathway, mismatch repair Identification of subtypes

Pathology, Anatomy and Tumour Biology

Clinical uses

- Genetic syndromes
- Outcomes
 - DNA
 - Deficient mismatch repair
 - Kiras/Braf/PIK3CA
 - RNA
 - oncotype Dx ?
 - RNA subtypes?

- Prediction of response
 - Anti-EGFr abs
 - Ras
 - Epiregulin/amphiregulin
 - Her3
 - Braf inhibitor
 - Braf
 - Her2
 - Aspirin PIK3CA
 - Immunotherapy
 - dMMR and anti PD1/PDL1

Pathology, Anatomy and Tumour Biology

Genetic syndromes

HHS Public Access Author manuscript Surg Clin North Am, Author manuscript; available in PMC 2016 October 01. Published in final edited form as:

Surg Clin North Am. 2015 October ; 95(5): 1067-1080. doi:10.1016/j.suc.2015.05.004.

Hereditary Colorectal Cancer: Genetics and Screening

Lodewijk A.A. Brosens, MD, PhD^{1,2}, G. Johan A. Offerhaus, MD, PhD, MPH³, and Francis M Giardiello, MD⁴

Colorectal cancer syndromes

Syndrome	Genes	Mode of inheritance
Lynch syndrome	MLH1, MSH2, MSH6, PMS2, or EpCAM	Autosomal dominant
(Attenuated) Familial adenomatous polyposis	APC	Autosomal dominant
MUTYH-associated polyposis	MUTYH (MYH)	Autosomal recessive
Peutz-Jeghers syndrome	LKB1 (STK11)	Autosomal dominant
Juvenile polyposis syndrome	SMAD4 (~30%) BMPR1A (~20%)	Autosomal dominant
Hereditary mixed polyposis syndrome	GREM1	Autosomal dominant
Serrated polyposis syndrome	unknown	unknown

Polymerase proof reading associated polyposis

POLE & POLD1

Autosomal dominant

3%

1%

Pathology, Anatomy and Tumour Biology

- HNPCC 3%
- Germ line mutations in DNA repair genes leads to hyper mutation
- Inactivates key genes leading to CRC and other cancers
- Truncated proteins appear on cell surface immune response
- Screening via MSI or immunohiostochemistry
 - dMMR proteins
 - hMSH2 (40%, hMLH1 (40%), hMSH6 (10%), PMS2 (6%) POLD (1%) and POLE (1%)
 - BRAF V600E wild type
- Germ line sequencing

Pathology, Anatomy and Tumour Biology

Nice recommendations Feb 2017 Routine testing in England

Molecular testing strategies for Lynch syndrome in people with colorectal cancer

In development [GID-DG10001] Expected publication date: February 2017 Register as a stakeholder

The base case results in the economic evaluation suggest that screening for LS in CRC patients using IHC, *BRAF* V600E and *MLH1* methylation testing would be cost-effective at a threshold of £20,000 per quality-adjusted life year (QALY). The incremental cost-effectiveness ratio for this strategy is £11,008 per QALY compared to no screening. Screening without tumour tests is not predicted to be cost-effective (more costly and less effective than another strategy).

Pathology, Anatomy and Tumour Biology

Classification - DNA

- Prognosis
 - dMMR/hypermutated 12-15%
 - Genomic instability Rest

Comprehensive molecular characterization of human colon and rectal cancer

The Cancer Genome Atlas Network*

330 | NATURE | VOL 487 | 19 JULY 2012

Figure 2 | Integrative analysis of genomic changes in 195 CRCs. Hypermutated tumours have near-diploid genomes and are highly enriched for hypermethylation, CIMP expression phenotype and BRAF(V600E) mutations. Non-hypermutated tumours originating from different sites are virtually indistinguishable from each other on the basis of their copy-number alteration patterns, DNA methylation or gene-expression patterns. Copy-number changes of the 22 autosomes are shown in shades of red for copy-number gains and shades of blue for copy-number losses.

N= 276 with 97 undergoing WGS

Pathology, Anatomy and Tumour Biology

Sporadic deficient Mismatch Repair (dMMR) Hyper mutated tumours

- Demographics
 - HNPCC dMMR/Braf wild type
 - Sporadic
 - Colon > rectum
 - Females
 - Stage II 12% Stage III 7%, Stage 4 4%
- Prognosis
 - 50% lower recurrence risk in stage II dMMR tumours
 - Prognostic effect dMMR remains in treated group
- Prediction
 - US data suggests less responsive to chemotherapy
 - NO evidence of worse outcome on chemo in Quasar

MR: Time to any recurrence

Stage II / III (n=1915)

UNIVERSITY OF LEEDS

Other mutations and prognosis

Recurrence Quasar1 – by KRas 12,13,61

N=789 MRC Focus stage IV

Fig 5. Recurrence by KRAS status: (A) all patients, (B) rectum stage II only. Obs., observed number of recurrences; Exp., expected number of recurrences; Var, variance of O-E.

Braf V600E not prognostic PIK3CA mutations not prognostic

Marker	Endpoint	Group	n	Hazard Ratio* (95% CI)	p-value
	PFS	W/T KRAS	322	1.0	0.06
	PF5	Any KRAS mutation	311	1.17 (1.00, 1.36)	0.06
KRAS	os	W/T KRAS	324	1.0	0.02
05	05	Any KRAS mutation	314	1.23 (1.04, 1.44)	0.02
NA	E de la desta de				

Marker	Endpoint	group	n	Hazard Ratio* (95% CI)	p-value
	PFS	W/T BRAF	679	1.0	0.90
DDAE	PFS	BRAF mutation	54	1.04 (0.78, 1.38)	0.80
BRAF	W/T BRAF 684 1.0	<0.0001			
	OS	BRAF mutation	54	1.69 (1.26, 2.27)	<0.0001

BRAF/dMMR 3063 cases Braf poor prognosis

Pathology, Anatomy and Tumour Biology

Multi-Gene RT-PCR Colon Cancer Assay

- Oncotype Dx colon

Fig 3. Kaplan-Meier estimates of 3-year recurrence in surgery-alone patients by risk group. Obs, observed; Exp, experienced.

HR = 1.47 (p=0.046)

Pathology, Anatomy and Tumour Biology

New RNA array patterns

Gene Expression Classification of Colon Cancer into Molecular Subtypes: Characterization, Validation, and Prognostic Value

Leettia Marisa¹, Aurélien de Reynis¹, Alex Dural^{1,3}, Janick Selves¹, Marie Pierre Gaub^{3,6}, Laure Vectoro¹, Marie Christine Etienne Grinnlaff², Reaud Schiappa J., Dominique Guenno¹, Mina Ayadi¹, Sylvain Ritza⁶, Musire Chazi¹, Asean François Figlio¹¹, Dominis Jenchmild¹¹, Anne Berger¹¹, Arnaud Lagarde¹¹, Erwan Pencreach^{11,43}, François Figlio¹¹, Dominique Ellas¹¹, Yann Farc¹³⁴, Sylvian Oltch²¹, Marie Chazi¹¹, Asean Gener Hug²¹, Valette Bolge^{11,247} Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-tomesenchymal transition

Paul Roepman¹, Andreas Schlicker², Josep Tabernero¹, Ian Majewski², Sum Tian¹, Victor Moreno^{6,5}, Mirellie H Snei¹, Christine M. Chresta⁶, Robert Rosenberg², Ulrich Nitsche⁷, Teresa Matanulla², Gabriel Capella³, Ramon Salazar³, George Orphande⁶, Lodewski⁴, Weissels^{1,5}, Remematul^{3,4} and Itis M. Simon¹

The consensus molecular subtypes of colorectal cancer

Justin Guinney^{1,21}, Rodrigo Dienstmann^{1,2,21}, Xin Wang^{3,4,21}, Aurélien de Reyniès^{5,21}, Andreas Schlicker^{6,21}, Charlotte Soneson^{7,22}, Laetitia Marisa^{3,21}, Paul Roepman^{8,21}, Gift Nyamundanda^{9,21}, Paolo Angelino⁷, Brian M Bot¹, Jeffrey S Morris¹⁰, Iris M Simon⁸, Sarah Gerster⁷, Evelyn Fessler³, Felipe De Sousa E Melo³, Edoardo Missiaglia⁷, Hena Ramay⁷, David Barras⁷, Krisztian Homicsko¹¹, Dipen Maru¹⁰, Ganiraju C Manyam¹⁰, Bradley Broom¹⁰, Valerie Boige¹², Beatriz Perez-Villamil¹³, Ted Laderas¹, Ramon Salazar¹⁴, Joe W Gray¹⁵, Douglas Hanahan¹¹, Josep Tabernero², Rene Bernards⁶, Stephen H Friend¹, Pierre Laurent-Puig^{16,17,22}, Jan Paul Medema^{3,22}, Anguraj Sadanandam^{9,22}, Lodewyk Wessels^{6,22}, Mauro Delorenzi^{7,18,19,22}, Scott Kopetz^{10,22}, Louis Vermeulen^{3,22} & Sabine Tejpar^{20,22}

CMS1 MSI immune	CMS2 Canonical	CMS3 Metabolic	CMS4 Mesenchymal
14%	37%	13%	23%
MSI, CIMP high, hypermutation	SCNA high	Mixed MSI status, SCNA low, CIMP low	SCNA high
BRAF mutations		KRAS mutations	
Immune infiltration and activation	WNT and MYC activation	Metabolic deregulation	Stromal infiltration, TGF-β activation, angiogenesis
Worse survival after relapse			Worse relapse-free and overall survival

Pathology, Anatomy and Tumour Biology

Transcriptome/Protein characterisation

UNIVERSITY OF LEEDS

A pathology atlas of the human cancer transcriptome

Mathias Uhlen,^{1,2,3}* Cheng Zhang,¹ Sunjae Lee,¹ Evelina Sjöstedt,^{1,4} Linn Fagerberg,¹ Gholamreza Bidkhori,¹ Rui Benfeitas,¹ Muhammad Arif,¹ Zhengtao Liu,¹ Fredrik Edfors,¹ Kemal Sanli,¹ Kalle von Feilitzen,¹ Per Oksvold,¹ Emma Lundberg,¹ Sophia Hober,³ Peter Nilsson,¹ Johanna Mattsson,⁴ Jochen M. Schwenk,¹ Hans Brunnström,⁵ Bengt Glimelius,⁴ Tobias Sjöblom,⁴ Per-Henrik Edqvist,⁴ Dijana Djureinovic,⁴ Patrick Micke,⁴ Cecilia Lindskog,⁴ Adil Mardinoglu,^{1,3,6}† Fredrik Ponten⁴†

Cancer is one of the leading causes of death, and there is great interest in understanding the underlying molecular mechanisms involved in the pathogenesis and progression of individual tumors. We used systems-level approaches to analyze the genome-wide transcriptome of the protein-coding genes of 17 major cancer types with respect to clinical outcome. A general pattern emerged: Shorter patient survival was associated with up-regulation of genes involved in cell growth and with down-regulation of genes involved in cell growth and with down-regulation of genes involved in cellular differentiation. Using genome-scale metabolic models, we show that cancer patients have widespread metabolic heterogeneity, highlighting the need for precise and personalized medicine for cancer treatment. All data are presented in an interactive open-access database (www.proteinatlas.org/pathology) to allow genome-wide exploration of the impact of individual proteins on clinical outcomes.

Uhlen et al., Science 357, eaan2507 (2017)

18 August 2017

Fig. 1 Analysis of the global expression patterns of protein-coding genes in human cancers. (A) Schematic drawing of the Human Pathology Atlas effort described herein. (B) Principal components analysis (PCA) showing the similarities in expression of 19,571 protein-coding genes among 17 cancer types. See fig. S4 for additional PCA analysis with more stratified patient cohorts. (C) PCA plot showing the individual differences in the genome-wide global expression profiles among the 17 cancer types in 9666 individual patients.

Pathology, Anatomy and Tumour Biology

Predictors

Gene	Genetic Alteration	Tumor Type	Therapeutic Agent
Receptor tyrosine kinase			
EGFR	Mutation, amplification	Lung cancer, glioblastoma	Gefitinib, erlotinib
ERBB2	Amplification	Breast cancer	Lapatinib
FGFR1	Translocation	Chronic myeloid leukemia	PKC412, BIBF-1120
FGFR2	Amplification, mutation	Gastric, breast, endometrial cancer	PKC412, BIBF-1120
FGFR3	Translocation, mutation	Multiple myeloma	PKC412, BIBF-1120
PDGFRA	Mutation	Glioblastoma, gastrointestinal stromal tumor	Sunitinib, sorafenib, imatinib
PDGFRB	Translocation	Chronic myelomonocytic leukemia	Sunitinib, sorafenib, imatinib
ALK	Mutation or amplification	Lung cancer, neuroblastoma, ana- plastic large-cell lymphoma	Crizotinib
c-MET	Amplification	Gefitinib-resistant non-small-cell lung cancer, gastric cancer	Crizotinib, XL184, SU11274
IGF1R	Activation by insulin-like growth factor II ligand	Colorectal, pancreatic cancer	CP-751,871, AMG479
c-KIT	Mutation	Gastrointestinal stromal tumor	Sunitinib, imatinib
FLT3	Internal tandem duplication	Acute myeloid leukemia	Lestaurtinib, XL999
RET	Mutation, translocation	Thyroid medullary carcinoma	XL184
Non–receptor tyrosine kinase			
ABL	Translocation (BCR-ABL)	Chronic myeloid leukemia	Imatinib
JAK2	Mutation (V617F), translocation	Chronic myeloid leukemia, myelo- proliferative disorders	Lestaurtinib, INCB018424
SRC	Overexpression	Non–small-cell lung cancer; ovarian, breast cancer; sarcoma	KX2–391, dasatinib, AZD0530
Serine-threonine-lipid kinase			
BRAF	Mutation (V600E)	Melanoma; colon, thyroid cancer	SB-590885, PLX-4032, RAF265, XL281
Aurora A and B kinases	Overexpression	Breast, colon cancer; leukemia	MK-5108 (VX-689)
Polo-like kinases	Overexpression	Breast, lung, colon cancer; lymphoma	BI2536, GSK461364
MTOR	Increased activation	Renal-cell carcinoma	Temsirolimus (CCI-779), BEZ235
РІЗК	PIK3CA mutations	Colorectal, breast, gastric cancer; glioblastoma	BEZ235
DNA damage or repair			
BRCA1 and BRCA2	Mutation (synthetic lethal effect)	Breast, ovarian cancer	Olaparib, MK-4827 (PARP inhibitors)

* PARP denotes poly(adenosine diphosphate-ribose) polymerase.

- Targeted therapies CRC
 - Anti EGFr ab's
 - Braf inhibitors
 - Anti PD1 and dMMR
 - Others
 - Herceptin anti Her2
 - Aspirin PIK3CA mutations

Pathology, Anatomy and Tumour Biology

KRAS and the EGFr signalling pathway in KRAS-wild type and KRAS-mutant patients

UNIVERSITY OF LEEDS

KRAS-WT

KRAS-MUTANT

Pathology, Anatomy and Tumour Biology

BRAF mutants

- BRAFinhibitors negative
- Block BRAF and others ?
- Early reports
 - No
 - BRAFi and MEK
 - Yes 26-35% RR
 - BRAFi. anti EGFr and anti PIK3CA
 - BRAF*i*, anti EGFr and Mek inhibitor
 - BRAFi, antiEGFr and Irinotecan
- Looks likely that dual inhibition BRAF*i* and antiEGFr works

EGF

666

Cell membrane

Growth factors

666666666666

EGF, TGFα, amphiregulin

PD-1 blockade phase 2 data

ORIGINAL ARTICLE

PD-1 Blockade in Tumors with Mismatch-Repair Deficiency

D.T. Le, J.N. Uram, H. Wang, B.R. Bartlett, H. Kemberling, A.D. Eyring, A.D. Skora, B.S. Luber, N.S. Azad, D. Laheru, B. Biedrzycki, R.C. Donehower, A. Zaheer, G.A. Fisher, T.S. Crocenzi, J.J. Lee, S.M. Duffy, R.M. Goldberg, A. de la Chapelle, M. Koshiji, F. Bhaijee, T. Huebner, R.H. Hruban, L.D. Wood, N. Cuka, D.M. Pardoll, N. Papadopoulos, K.W. Kinzler, S. Zhou, T.C. Cornish, J.M. Taube, R.A. Anders, J.R. Eshleman, B. Vogelstein, and L.A. Diaz, Jr.

N Engl J Med 2015;372:2509-20.

000000

Pathology, Anatomy and Tumour Biology

Reapplying drugs from other sites - small populations

- Challenge
 - Agents positive in other cancers
 - Her-2
 - Stage II Quasar 25/1767 (1.4%) all pMMR
 - Stage IV CRC 29/1340 (2.2%)
 - Ki ras/Braf wild type 24/461 (5.2%)
 - Ki ras/Braf mutant 5/527 (0.95%)
 - 96.4% amplified
- ? Others –fusion genes

Susan Richman Katie Southward Gemma Hemmings

Pathology, Anatomy and Tumour Biology

PIK3CA mutations

- Quasar1
 - 874 cases PIK3CA mutations 13.9 %. 83 exon 9 (9.5%) exon 20 (4.4%).
 - No prognostic effect in stage II
- Aspirin
 - PIK3CA mutations reduced recurrence
 - NEJM HR 0.18 New Engl J Med. 2012 Oct 25;367(17):1596-606.
 - Victor HR 0.11 J Clin Oncol. 2013 Dec 1;31(34):4297-305.

Add Aspirin trials

Pathology, Anatomy and Tumour Biology

Changing clinical trials – Focus 4

EME/CRUK Focus 4 n = 3,500

Testing NGS Kras 12,13, 59, 61,146 Nras 12,13, 61 PIK3CA exon 9 & 20 Braf V600E p53

PTEN immuno dMMR immuno

Labs Leeds and Cardiff Susan Richman Gemma Hemmings

Pathology, Anatomy and Tumour Biology

Leeds Institute of Cancer and Pathology

aspirin oral Her 1,2,3 inhibitor (AZD8931) WEE-1 inhibitor

Following disease

Pathology, Anatomy and Tumour Biology

Resistance develops on therapy

UNIVERSITY OF LEEDS

Resistance to BRAF Inhibitors

Emerging mutational Resistance Ras in CRC with anti-EGFr Rx

Preoperative chemoradiation with capecitabine, irinotecan and cetuximab in rectal cancer: significance of pre-treatment and post-resection RAS mutations

Simon Gollins^{*1}, Nick West², David Sebag-Montefiore³, Arthur Sun Myint⁴, Mark Saunders⁵, Shabbir Susnervala⁶, Phil Quirke⁷, Sharadah Essapen⁶, Leslie Samuel⁷, Bruce Sizer¹⁰, Jane Worlding¹¹, Katie Southward⁶, Germa Hemminge², Ernma Tinkler-Hundal², Morag Taylor², Daniel Bottomley², Philip Chambers², Ernma Lawrie¹², Andre Lopes¹² and Sandy Beare¹²

Excite phase 2 Rectal cancer 19% gained mutations 35% lost mutations after treatment

Average response duration ~6 months

Pathology, Anatomy and Tumour Biology

Screening - DNA

- Screening/diagnosis
- Cologuard
- DNA mutations in stool

Imperiale TF, Ransohoff DF, Itzkowitz SH, et al. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med. 2014;370(14):1987-97.

Kate Sutton

Pathology, Anatomy and Tumour Biology

UNIVERSITY OF LEEDS

Summary

- Diagnosis of hereditary disease
- Routine screening for HNPCC
- DNA subtypes
 - Hypermutators/dMMR are important 12%
 - Worse prognosis RAS mutants and BRAF in stage 4
 - RNA profiles not yet clinically usable
- Predictors
 - K and NRas mutations present insensitive to an
 - Anti PD1/PDL1 and dMMR story developing
 - Braf ?anti EGFr and Brafi
 - ? Her-2 and anti-Her2 therapy
 - ? PIK3CA,

New trial methods

Pathology, Anatomy and Tumour Biology

Thanks to:

• Yorkshire Cancer Research

Trials

- Quasar1 Richard Gray, Kelly Handley, Gordon Hutchins
- Focus 1-4, Piccolo, Susan Richman, Matt Seymour, Jenny Barrett, Gemma Hemmings
- Tim Palmer, Susan Richman, Morag Taylor
- Trialists, collaborators and colleagues
- MRC, CRUK and Yorkshire Trials Units

UNIVERSITY OF LE

Pathology, Anatomy and Tumour Biology