
Colostomy & Ileostomy

Indications, problems and preference

By

Waleed Omar

Professor of Colorectal surgery, Mansoura University.

Disclosure

I have no disclosures.

Presentation outline

- Stoma: Definition and classifications.
- •Rationale and indications.
- Stoma Problems.
- •What should we do?
- Colostomy Vs Ileostomy.
- •Is there another solution?

•Greek in origin means "mouth"

•Intestinal stoma: opening of the intestinal tract onto the abdominal wall.

Classification

According to:

Anatomy

- Colostomy
- Ileostomy
- Urostomy

Duration

- Temporary
- Permanent

Configuration

- End
- Loop
- Others

Rationale

Defunction to allow healing of distal anastomosis or reconstruction

Decompression for distal obstruction

Prevent or reduce complications

Reduce mortality

Indications (general)

Protecting anastomosis

- Anastomosis at risk due to general condition (immunosuppression, shock, peritonitis..etc)
- Oftnely after certain procedures: Low anterior resection (TME for cancer).

Restorative proctocolectomy (UC, FAP).

Protecting repair

- Anal sphincter repair
- Complex fistula
- Colorectal Trauma

Infection

- Fournier gangrene
- Pelvic sepsis
- Bowel perforation

Disease	Presentation	Rationale	Configuration	Time	
al cancer	Rectal cancer (LAR)	Defunction (anastomosis protection)	Loop Ileostomy or colostomy	Usually Temporary	
Colorectal cancer	Very low cancers	A part of APR	End colostomy	Permanent	
	Obstruction	Decompression	End or loop colostomy	Usually Temporary	
	Perforation	Defunction	End or loop colostomy		

Disease	Presentation	Rationale	Configuration	Time
Diverticular disease	Elective fistula	Defunction (anastomosis protection)	colostomy End or loop Usua	Usually Temporary
Diverticul	Perforation	Defunction	End or loop colostomy	Usually Temporary
	Obstruction	Decompression	End or loop colostomy	

Disease	Presentation	Rationale	Configuration	Time	
Ulcerative colitis	Acute colitis	Defunction (after subtotal colectomy)	End ileosotomy	Temporary or permanent	
	Chronic disease	Eradication of disease (after panproctocolectomy)	End Ileostomy	Permanent	
	Elective	Defunction (after ilealpouch surgery)	Loop ileostomy	Temporary	

Disease	Presentation	Rationale	Configuration	Time
Crohn's disease	Crohn's colitis	Defunction	Loop or split ileosotomy or colostomy	Temporary or permanent
Crohn's	Small bowel dis	Defunction	Loop or end or split ileostomy	
	Elective	Eradication of disease (after panproctocolectomy)	End ileostomy	Permanent
	Septic complication Or perianal diseaease	Defunction	Loop or end ileostomy	Usually Temporary

Disease	Presentation	Rationale	Configuration	Time	
Trauma	Colon or rectum	Defunction	lleosotomy or colostomy	Usually temporary	
	Anal sphincter				
Functional	Fecal Incontince	Defunctioning anus	End colostomy	Permanent	
L.	Sphincter repair	Defunction	Loop ileostomy or colostomy	Temporary	

Stoma problems

21-70% overall rate of complications

• Arumugam et al, Colorectal dis 2003.

≥50% develop at least one complication within one year.

• Shabbir et al, Colorectal dis 2010.

Risk for stoma problems

- Emergency procedures.
- Obesity.
- •Female gender.
- Age.
- •Type of stoma ??!!

- •Eversion(sprout) >10mm.
- Diabetes.
- •Others...

According to:

Cottam et al, Colorectal dis 2007

Shabbir et al, Colorectal dis 2010

Stoma problems

Category	Complications	Complications					
	Early	Late					
Stoma related	Poor location	Prolapse					
	Retraction *	Stenosis					
	Ischemic necrosis	Parastomal hernia					
	Detachment	Fistula					
	Wrong limb exteriorized	Gas and odor					
Peristomal skin	Excoriation	Dermatosis					
	Dermatitis	Parastomal varices					
		Cancer					
Systemic	High output/loss of fluid (dehydration) *	Bowel obstruction					
		Nonclosure					
Closure related	Leakage*	Incisional hernia					
Quality of life	++						

^{*} May be developed late

What should we do?

- Patient selection (risk assessment).
- ☐ Prevention is always better than treatment.
 - Adequate surgical technique:
 - Positioning
 - Bowel perfusion
 - Length
 - Tension
 - Fascial opening
 - Sprouting
 - Suturing

What should we do?

□Follow the guidelines (at least the strong recommendations level 1)

PRACTICE PARAMETERS

Clinical Practice Guidelines for Ostomy Surgery

Samantha Hendren, M.D., M.P.H • Kerry Hammond, M.D. • Sean C. Glasgow, M.D. W. Brian Perry, M.D. • W. Donald Buie, M.D. • Scott R. Steele, M.D. • Janice Rafferty, M.D.

Prepared by the Clinical Practice Guidelines Committee of the American Society of Colon and Rectal Surgeons

Dis Colon Rectum 2015; 58: 375–387 DOI: 10.1097/DCR.0000000000000347 © The ASCRS 2015 DISEASES OF THE COLON & RECTUM VOLUME 58: 4 (2015)

Guidelines for ostomy creation (only strong recommendations) 1

- 1. When feasible, laparoscopy is preferred to ostomy formation via laparotomy. 1C
- 2. <u>Whenever possible</u>, both ileostomies and colostomies should be fashioned to protrude above the skin surface. **1C**
- 3. Lightweight polypropylene mesh may be placed at the time of permanent ostomy creation to decrease parastomal hernia rates. **1B**
- 4. Ileostomy patients, postoperative care pathways may prevent hospital readmission for dehydration. **1C**

Guidelines for ostomy closure (only strong recommendations) 1

- 1. Stapled and hand-sutured techniques are both acceptable for loop ileostomy closure. 1B
- 2. Ostomy-site skin reapproximation should be performed when feasible, and pursestring skin closure may have advantages compared with other techniques. **1B**
- 3. Laparoscopic Hartmann reversal is a safe alternative to open reversal in experienced hands. 1C

Guidelines for ostomy complications (only strong recommendations) 1

- 1. Parastomal hernia repair should typically be performed by using mesh reinforcement or by relocating the stoma. **1C**
- 2. Prosthetic mesh may be used during parastomal hernia repair with low short-term risk of intestinal erosion or mesh infection. **1C**
- 3. Laparoscopic parastomal hernia repair with mesh may be a safe alternative to open mesh repair. **1C**

So, Colostomy or Ileostomy?

Colostomy Vs Ileostomy

Cochrane Database of Systematic Reviews

Ileostomy or colostomy for temporary decompression of colorectal anastomosis (Review)

Güenaga KF, Lustosa SAS, Saad SS, Saconato H, Matos D. Ileostomy or colostomy for temporary decompression of colorectal anastomosis. *Cochrane Database of Systematic Reviews* 2007, Issue 1. Art. No.: CD004647. DOI: 10.1002/14651858.CD004647.pub2.

www.cochranelibrary.com

•5 RCT included.

•20 outcomes measures:

- A General outcomes: mortality, wound infection, time interval between formation and closure of the stoma, length of hospital stay, reoperation and colorectal anastomotic dehiscence.
- B- Stoma construction: time of formation, stoma prolapse, stoma retraction, stoma necrosis, parastomal hernia, parastomal fistula and stoma stenosis.
- C- Stoma closure: bowel leakage, time of stoma closure, incisional hernia and postoperative bowel obstruction.
- D Functioning stoma: patient adaptation, skin irritation and postoperative ileus.
- Only stoma prolapse was significantly less with ileostomy.
- •No other significant difference.

Conclusion: From the current data included in this review, it is not possible to express a preference for use of either loop ileostomy or loop colostomy for fecal diversion from a colorectal anastomosis.

Colostomy Vs Ileostomy

Int J Colorectal Dis (2009) 24:479–488 DOI 10.1007/s00384-009-0662-x

REVIEW

Loop ileostomy versus loop colostomy for fecal diversion after colorectal or coloanal anastomosis: a meta-analysis

F. Rondelli · P. Reboldi · A. Rulli · F. Barberini ·

A. Guerrisi · L. Izzo · A. Bolognese · P. Covarelli ·

C. Boselli · C. Becattini · G. Noya

• 12 comparative studies; **5 RCTs**, 7 comparative non randomized (3 prospective & 4 retrospective)

- Outcomes measured:.
 - A—General: wound infection and dehydratation.
 - B—Stoma Construction: necrosis, prolapse, retraction, parastomal hernia, stenosis, sepsis, and hemorrhage.
 - C—Stoma closure: occlusion, wound infection, anastomotic leak or fistula, and hernia.
 - D—Stoma function: skin irritation and occlusion.
- Hernia and prolapse are less with Ileostomy.
- <u>Dehydration</u> is less with colostomy.
- No other significant differences.
- The conclusion reached from this meta-analysis is that the <u>superiority of one</u> treatment over another <u>cannot be definitively declared</u>; however, the authors here endorse LI over LC.

PRACTICE PARAMETERS

Clinical Practice Guidelines for Ostomy Surgery

Samantha Hendren, M.D., M.P.H • Kerry Hammond, M.D. • Sean C. Glasgow, M.D. W. Brian Perry, M.D. • W. Donald Buie, M.D. • Scott R. Steele, M.D. • Janice Rafferty, M.D.

Prepared by the Clinical Practice Guidelines Committee of the American Society of Colon and Rectal Surgeons

Dis Colon Rectum 2015; 58: 375–387 DOI: 10.1097/DCR.0000000000000347 © The ASCRS 2015 DISEASES OF THE COLON & RECTUM VOLUME 58: 4 (2015)

Conclusion

Loop ileostomy is preferred over transverse loop colostomy for temporary fecal diversion in most cases. <u>Weak recommendation</u> based on moderate-quality evidence, **2B**.

Is there another solution?

Another solutions?

☐ Ghost ileostomy

ORIGINAL CONTRIBUTION

Ghost Ileostomy in Anterior Resection for Rectal Carcinoma: Is It Worthwhile?

Lorenzo Mori, M.D. • Matteo Vita, M.D. • Francesco Razzetta, M.D. Piercarlo Meinero, M.D. • Giovanni D'Ambrosio, M.D.

Department of General Surgery, Azienda Sanitaria Locale No. 4 Chiavarese, Lavagna, Genova, Italy

Another solutions? Ghost ileostomy

OF THE COLON & RECTUM VOLUME 56: 1 (2013)

- •168 LAR with TME for rectal cancer.
- •20/168 had leaks
 - 13/20 Ileostomy by local anesthesia.
 - 5/20 successful conservative measures.
 - 2/20 peritonitis required colostomy.

91% without Stomas

High risk patients were excluded

2. Exteriorization and fixation of the vascular loop to the

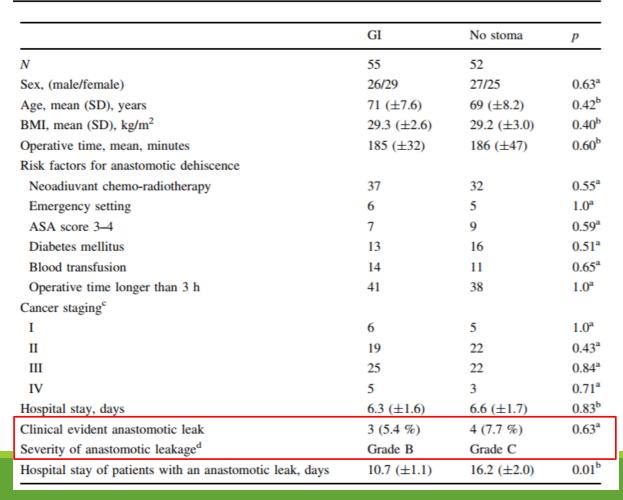
Another solutions?

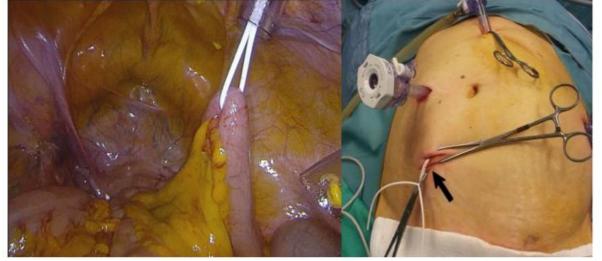
☐ Ghost ileostomy

Surg Endosc (2015) 29:2590–2597 DOI 10.1007/s00464-014-3974-z

Does ghost ileostomy have a role in the laparoscopic rectal surgery era? A randomized controlled trial

Francesco Saverio Mari · Tatiana Di Cesare · Luciano Novi · Marcello Gasparrini · Giammauro Berardi · Giovanni Guglielmo Laracca · Andrea Liverani · Antonio Brescia





Another solutions? Ghost ileostomy

Surg Endosc (2015) 29:2590-2597

Surg Endosc (2015) 29:2590-2597

- No patients with leak needed laparotomy (n=3)
- High risk patients were excluded

Another solutions?

☐ Tube ileostomy

Systematic review

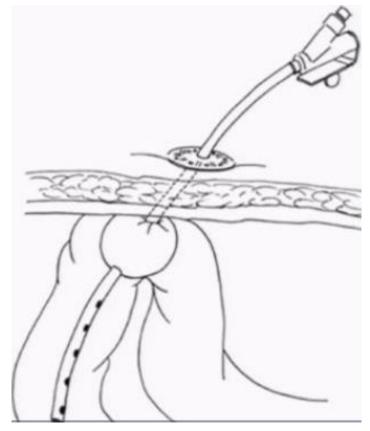
doi:10.1111/codi.12997

Tube ileostomy for faecal diversion in elective distal colorectal anastomosis: a systematic review and pooled analysis

S. Nachiappan*†, U. Datta‡, A. Askari*† and O. Faiz*†

*Surgical Epidemiology, Trials and Outcome Centre (SETOC), St Mark's Hospital and Academic Institute, Harrow, Middlesex, UK, †Department of Surgery and Cancer, Imperial College, St Mary's Hospital, London, UK and ‡Imperial College Medical School, London, UK

Received 27 October 2014; accepted 9 February 2015; Accepted Article online 9 May 2015



Study or Subgroup	Tube Ileoston Events	ny Total	Loop Ileoston Events	,	Weight	Odds Ratio M-H, Random, 95% C	Year		s Ratio dom, 95% Cl		
Rondelli 2012	1	75	4	68	10.5%	0.22 [0.02, 1.98]	2012		\vdash		
Hanju 2014	12	149	12	145	74.2%	0.97 [0.42, 2.24]	2014	_	_		
Zhou 2014	3	54	2	41	15.3%	1.15 [0.18, 7.20]	2014		•		
Total (95% CI)		278		254	100.0%	0.85 [0.41, 1.75]		4			
Total events	16		18								
Heterogeneity: Tau ² :	= 0.00; Chi ² $= 1$.68, df =	2 (P = 0.43); I	$^{2} = 0\%$			0.01	0.1	1	10	100
Test for overall effect	t: Z = 0.44 (P =	0.66)					-	Favours (Tube Ileostomy)	Favours (Lo	oop lleostomy	

Figure 2 Meta-analysis: risk of anastomotic leak for tube ileostomy vs loop Ileostomy (three studies).

- No difference in anastomotic leakage.
- Less morbidty (Mostly peristomal cellulitis)
- **But only retrospective comparative studies, no RCT**

Another solutions?

☐ Transanal decompression tube

Surg Endosc (2017) 31:1513–1523 DOI 10.1007/s00464-016-5193-2

REVIEW

Prophylactic transanal decompression tube versus nonprophylactic transanal decompression tube for anastomotic leakage prevention in low anterior resection for rectal cancer: a meta-analysis

Yun Yang¹ · Ye Shu² · Fangyu Su³ · Lin Xia² · Baofeng Duan⁴ · Xiaoting Wu²

Another solutions? — Transanal decompression tube

Surg Endosc (2017) 31:1513-1523

- 7 studies only 2 RCT
- Conclusion: TDT might reduce the rate of Anastomotic Leakage.

• But there was no difference in the RCTs

	TD	Г	Non-7	TDT		Risk Ratio	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	
1.2.1 Prospective RCT								
Liang Xiao 2011	7	188	17	182	23.5%	0.40 [0.17, 0.94]		
S. Bülow 2006	8	54	5	51	7.0%	1.51 [0.53, 4.32]		
Subtotal (95% CI)		242		233	30.5%	0.65 [0.35, 1.23]		
Total events	15		22					
Heterogeneity: $Chi^2 = 3$.	73, df = 3	(P = (0.05); 12	= 73%				
Test for overall effect: Z	= 1.32 (P	= 0.19	9)					
1.2.2 Retrospective coh	ort							
Eiji Hidaka 2015	4	96	15	109	19.1%	0.30 [0.10, 0.88]		
Hideaki Nishigori 2014	1	36	22	140	12.2%			
Soo Young Lee 2015	9	154	14					
Wentao Zhao 2013	2	81	7	77				
Yun Yang 2015 (1)	1	224	7	226	9.5%	0.14 [0.02, 1.16]		
Subtotal (95% CI)		591		706	69.5%	0.35 [0.20, 0.60]	•	
Total events	17		65					
Heterogeneity: $Chi^2 = 3.5$	53, df = 4	4 (P = 0	0.47); 12 :	= 0%				
Test for overall effect: Z	= 3.81 (P	= 0.00	001)					
Total (95% CI)		833		939	100.0%	0.44 [0.29, 0.66]	•	
Total events	32		87					
Heterogeneity: Chi ² = 8.	97, df = 6	5 (P = (0.18); 12 :	= 33%			0.01 0.1 1	10
Test for overall effect: Z							0.01 0.1 1 TDT Non-TDT	10 10
Test for subgroup differe				(P = 0). 14), I ² =	54.6%	IDI NON-IDI	
Footnotes			0.000.000000000000000000000000000000000	10.5117-10.00	961 657 (1 76 1741 - 174			
(1) Unpublished data pro	ovided by	author						
(1) Unpublished data pro	ovided by	author						

Conclusion

- Stoma has several indications.
- Morbidity rates are high.
- •Prevention of morbidities is always better than treatment:
 - Patient selection.
 - Adequate surgical technique.
- According to available evidence there is no difference between colostomy and ileostomy
 - Ileostomy might have a very slight edge over colostomy

•Ghost ileostomy, tube ileostomy and transrectal tube decompression may become options.

Thank you..

