Diverticulitis Evolution in Management Wash, Drain or Divert?

20th Annual Conference of the Egyptian Group of Colon and Rectal Surgeons

Scott R. Steele, MD, MBA, FACS, FASCRS Chairman, Department of Colorectal Surgery Rupert B. Turnbull, M.D., Endowed Chair in Colorectal Surgery Cleveland Clinic, Cleveland, OH Professor of Surgery, CCLCOM Cleveland Clinic @ScottRSteeleMD

Diverticulitis: It is Really Increasing?

FIGURE 1. Diverticulitis discharges (complicated and uncomplicated) in Nationwide Inpatient Sample hospitals as a proportion of all inpatients. Significance determined by joinpoint analysis and confirmed with nonparametric Kendall correlation analyses.

Ricciardi et al. Dis Colon Rectum. 2009; 52:1558-63

Surgery recommended to
1. avoid emergent surgery with high mortality
2. possibility of a stoma

Uncomplicated disease

Minimal symptoms

Outpatient treatmentOral antibiotics

Inpatient treatmentIV antibioticsTransition to oral

Fever, Systemic Symptoms

Length of treatment 7 – 14 days

Indications for Elective Management "Old Rules"

Uncomplicated

Nonoperative Therapy

2 attacks 1 attack if < 50 years

American College of Gastroenterology, 2006 American Society of Colon and Rectal Surgeons PP, SSAT, European Association for Endoscopic Surgery Stollman et al Am J Gastro 1999, Wong et al Dis Colon Rectum 2000, J Gastrointest Surg 1999, Surg Endosc 1999

Complicated Disease

Nonoperative Therapy Elective/Emergent Surgery

1 attack

American College of Gastroenterology, American Society of Colon and Rectal Surgeons, SSAT, European Association for Endoscopic Surgery Stollman et al Am J Gastro 1999, Wong et al Dis Colon Rectum 2000, J Gastrointest Surg 1999, Surg Endosc 1999

PRACTICE PARAMETERS

Practice Parameters for the Treatment of Sigmoid Diverticulitis

Daniel Feingold, M.D. • Scott R. Steele, M.D. • Sang Lee, M.D. • Andreas Kaiser, M.D. Robin Boushey, M.D. • W. Donald Buie, M.D. • Janice Frederick Rafferty, M.D.

Prepared by the Clinical Practice Guideline Task Force of the American Society of Colon and Rectal Surgeons

The American Society of Colon and Rectal Surgeons is dedicated to ensuring high-quality patient care by advancing the science, prevention, and management of disorders and diseases of the colon, rectum, and anus. The Clinical Practice Guideline Committee is composed of Society members who are chosen because they have demonstrated expertise in the specialty of colon and plicated," "uncomplicated," "stents," "ureter," "bowel preparation," "Hinchey," "CT," "MRI," "ultrasound," "antibiotics," "resection," "percutaneous drainage," "laparoscopic," and "colectomy." Directed searches of the embedded references from the primary articles were also performed in selected circumstances. Although not intended to be exclusionary, the authors primarily focused on English language mapu

Dis Colon Rectum. 2014 Mar;57(3):284-94.

Major Changes

- The decision to recommend elective sigmoid colectomy after recovery from uncomplicated acute diverticulitis should be individualized. 1B.
- Routine elective resection based on young age (<50 years) is no longer recommended. 1C.</p>
- Following resection, the decision to restore bowel continuity must incorporate patient factors, intraoperative factors, and surgeon preference. 1C
- When expertise is available, the laparoscopic approach to elective colectomy for diverticulitis is preferred. 1A.

Primary Anastomosis vs. Lavage vs. Diversion

Potential Benefits

- Avoids another surgery
- Up to 50% with stoma won't be reversed
- Morbidity equivalent
- **QOL**

Cost

Potential Negatives

Leak

Recurrence (lavage)

Death

Resection: Two-Stage Procedures

- Hartmann's resection
 - Traditional gold standard
 - ? Safer
 - Maggard, Am Surg, 2004
 - 35% of patients did no undergo stoma reversal

Primary colorectal anastomosis with protecting stoma

- Landen, Acta Chir Belg, 2002
 - 20 patients, retrospective
 - Mortality/Morbidity 15%/50%
 - All stomas closed through peristomal incision
- Bax, Am J Surg, 2007
 - 1% anastomotic failure rate
 - Major/minor stoma complications 13%/24%
 - 3% stoma closure complication rate

Selection Bias?

Resection with Primary Unprotected Anastomosis?

- An alternative in highly selected patients in ideal clinical circumstances
- **Salem, DCR, 2004**
 - Meta-analysis comparing primary anastomosis to Hartmann's resection
 - Mortality -10/20%
 - Wound infection 10/29%
 - Anastomotic leak 14/4%
- Abbas, Int J Colorectal Dis, 2007
 - Meta-analysis comparing primary anastomosis to Hartmann's resection
 - No difference in morbidity or mortality

Hartmann's Procedure vs. Primary Resection With and Without Stoma

Abbas			Stoma	Abdominal	Anastomotic	Wound
2007; 18	Ν	Mortality	Compl	Abscess	Leak	Infection
Studies			~			
HP	526	19%	7-12%	8%		22.6%
HPR					8%	
PRA	358	9%	18%	4%	5%	14%
Salem 2	004; 5	4 Studies				
HP	1051	18%	10.3%			24.2%
HPR	787	0.8%			4.3%	4.9%
PRA	569	9.9%				9.6%
Constar	ntinide	es 2006; 15 S	tudies			
HP	416	15.1%		8.7%		22.3%
HPR			3.9%			
PRA	547	4.9%		3.9%		9.6%
PRA/St	t		8.3%			

Primary Anastomosis vs. Hartmann's For Diverticulitis

- Systematic review of 98 studies
- Mortality
 - Hartmann's 19.6% (0.8% for reversal)
 - Primary Anastomosis 9.9% (0 75%)
- Wound infection
 - Hartmann's 24.2% (4.9% for reversal)
 - Primary Anastomosis 9.6% (0 26%)
- Stoma complications 10.3%; Leak 4.3% in reversal; Leak 13.9% (0 60%) in PA Salem, Flum. Dis Colon Rectum, 2004.

Updated Systematic Review

59 studies

Mortality: 3.05%
10.6% Urgent vs. 0.5% Elective
0.75% Lap vs. 4.69% Open
1.96% Primary anastomosis vs. 14.18% Hartmann's
Morbidity 32.64% all comers
18.96% surgical and 13.93% medical

Haas JM, et al. United European Gastroenterol J. 2016

DIVERTI RCT: Hartmann's vs. PA Generalized Peritonitis from Diverticulitis

Multi-center trial France (2008-2012)
102 patients purulent / feculent peritonitis
Randomized to PA or Hartmann's (18 mos f/u)

	Mortality	Morbidity	Absence of Stoma
Hartmann's	7.7%	39%	65%
Primary Anastomosis	4% (NS)	44% (NS)	96% (P=0.0001)

Bridoux V et al. J Am Coll Surg 2017 Sept

Does the Surgeon Matter?

 \square N = 136 (Acute Diverticulitis) ■ 65% Non-CR and 35% CR Surgeons ■ Hartmann's 68% vs. 41% (p=0.01) Similar demographics, ASA, Hinchey LOS, time to stoma reversal, ICU LOS, complications lower in CRS (43% vs. 16%, p=0.02)

Jafferji MS, Hyman N. J Am Coll Surg 2014.

Lap vs. Open Restorative Emergent Colectomy

All em
NSQI
Lap gr
MVR:
Simila:

"Laparoscopic emergent colon resection with primary anastomosis has postoperative morbidity and mortality rates comparable to those seen with the open approach, and it reduces the total and postoperative length of hospital stay."

Ballian N, et al. World J Surg, 2012.

Emergency Primary Anastomosis & Outcomes

Year Study Type	Author Journal	HP n	PA n	Disease (Bias)	Correlation with Outcomes <i>vs.</i> Hartmann's
2003 RR	Regenet Int J Colorectal Dis	3327Diverticulities(Selection)		Diverticulitis (Selection)	Better Mortality/Compl/LOS
2006 SR	Constantinides Dis Colon Rectum	414	549	Diverticulitis (Selection)	Better Mortality
2006 RR/CM	Aydin Dis Colon Rectum	123	731	Diverticulitis (Selection)	Better Mortality/Compl/LOS
2012 SR	Toro Chirurgia	800	1010	Diverticulitis (Multiple)	Better Mortality/Compl
2015 RR	Reyes-Espejel Rev Gastro Mex	32	45	Hinchey III- IV Diverticulitis	Similar Compl/Mortality

A Multicenter Randomized Clinical Trial of Primary Anastomosis or Hartmann's Procedure for Perforated Left Colonic Diverticulitis With Purulent or Fecal Peritonitis

Oberkofler, Christian Eugen MD^{*}; Rickenbacher, Andreas MD^{*}; Raptis, Dimitri Aristotle MD, MSc^{*}; Lehmann, Kuno MD^{*}; Villiger, Peter MD⁺; Buchli, Christian MD⁺; Grieder, Felix MD[‡]; Gelpke, Hans MD[‡]; Decurtins, Marco MD[‡]; Tempia-Caliera, Adrien A. MD[§]; Demartines, Nicolas MD[§]; Hahnloser, Dieter MD[§]; Clavien, Pierre-Alain MD, PhD^{*}; Breitenstein, Stefan MD^{*}

■ 62 patients (Hinchey III/IV); 4 centers **RCT HP (n-30) and PA/DLI (n=32)** ■ Complication (80 vs. 84%; p=0.813) Mortality (13% HP vs. 9% PA/DLI) Stomal reversal (57% HP vs. 90% PA/DLI) Costs (\$24,014 HP vs. \$16,717 PA/DLI) Oberkofler CE, et al. Ann Surg, 2012.

What are the Barriers to Primary Anastomosis?

- Timing / Condition
 - How sick is the patient?
 - How severe is the disease?
- Patient Selection
 - Comorbidities
 - BMI
 - Ability to tolerate a leak
- Experience / Operation
 - Site of disease (total vs. right vs. left vs. stoma)
 - Experience of provider
 - Experience of the team

Management Algorithm Emergency Colectomy

Laparoscopic Lavage

What is the Role for Laparoscopic Peritoneal Lavage and Drainage?

- 4-15 liters warm saline, drains, antibiotics
- Taylor, ANZ J Surg, 2006
 - 14 patients (II-2, III-10, IV-2)
 - 79% (11) recovered and discharged
 - 73% (8) underwent elective colectomy
- Franklin, World J Surg, 2008
 - 40 patients of undefined severity
 - No acute treatment failures
 - 50% underwent elective resection
- Myers, Br J Surg, 2008
 - Prospective, multi-institutional study, 100 patients
 - 8% Class IV- Hartmann's resection
 - 92% successfully treated with 4% morbidity and 3% mortality
 - 2% with recurrent diverticulitis at 36 months

Laparoscopic Lavage in Diverticulitis

Study	Year	N	Hinchey	Morbidity	Mortality	Urgent
			(Grade 4)	0⁄0	%	Surgery
						(%)
O' Sullivan	1996	8	III	25	0	0
Rizk	1998	10	III/IV (2)	20	0	0
Faranda	2000	18	III/IV	19	0	0
Taylor	2006	14	II/III/IV (2)	0	0	21
Myers	2008	100	II/III/IV (8)	4	3	8
Franklin	2008	40	II/III/IV (3)	25	0	0
Lam	2009	11	II/III	-	0	63
Karoui	2009	35	III	16	0	3
Rogers	2012	427		14	4	
Sorrentino	2015	63	II/III/IV	14.3	1.6	16

Laparoscopic Lavage Published Studies

1996-2009 : 10 studies 255 pts (7-92) Age: 58 yrs Majority: Hinchey 3 Lavage Conversion :2.3% Morbidity : 11.4% Mortality : 1.2% LOS: 8.2 days (1-32) **Resection :** 42% at 38 months

Laparoscopic Lavage for Perforated Diverticulitis: A Population Analysis

Ailín C. Rogers, M.B., B.Ch., B.A.O.^{1,2} • Danielle Collins, M.D.¹ Gerald C. O'Sullivan, F.R.C.S.I.^{1,†} • Desmond C. Winter, M.D., F.R.C.S.I.^{1,2}

 Institute for Clinical Outcomes Research & Education (iCORE) and Centre for Colorectal Disease, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
 School of Medicine & Medical Science, University College Dublin, Dublin, Ireland

2457 patients - 427 with laparoscopic lavage
Mortality (4% vs. 10.4%; P<0.001)
Morbidity (14.1% vs. 25%; P<0.001)
LOS (10d vs. 20d; P<0.001)

Dis Colon Rectum 2012; 55: 932–938 DOI: 10.1097/DCR.0b013e31826178d0 © The ASCRS 2012

		Study characteristics			Patient outcomes	
Authors	No. of patients	Study design	Country	Length of stay, d	Complication n (%)	Mortali n (%)
O'Sullivan et al ⁷	8	Case series	Ireland	10	2 (25)	0
Aouad et al ²⁵	1	Case report	France		0	0
Taylor et al ⁹	12ª	Case series	Australia	7	1 (12)	0
Mutter et al ²⁶	10	Case series	France	9	1 (10)	0
Galleano et al ²⁷	4	Case series	Italy	-	0	0
Myers et al ¹⁰	92 ^a	Cohort study	Ireland	8	5 (4)	3 (3)
Bretagnol et al ¹⁴	24	Cohort study	France	12	2 (8)	0
Franklin et al ¹³	40	Case series	USA	3	2 (5)	0
Mazza et al ²⁸	25	Case series	France	14	3 (12)	0
Lam et al ²⁹	6	Case series	Belgium	11	3 (50)	0
Favuzza et al ³⁰	7	Case series	USA	8	2 (28)	0
Jaffer et al ³¹	1	Case report	UK	5	0	0
Karoui et al ³²	35	Case series	France	8	7 (17)	0
Lippi et al ³³	13ª	Case series	Italy	-	2 (15)	3 (23)
White et al ¹⁵	35	Case series	Australia	14	12 (34)	0
Huscher et al ³⁴	1	Case report	Italy	5	0	0
This study	427	Population study	Ireland	10	00 (14)	17 (4)
Total	768			10	13	3

^aOnly those solely undergoing laparoscopic lavage for nonfeculent peritonitis were included for this table.

RCTs for Lap Lavage Since 2008

Source	Country	Туре	Hinchey	Patients	Lavage	Procedure For Resection	F/U
Shultz 2015	Norway	RCT	I-III	199	>4L Saline	PA or Hartmann's	12
Vennix 2015 (LADIES)	Netherlands	RCT	III	90	<u><</u> 6L Saline	PA vs. Hartmann's	12
Angenete 2016	Sweden / Denmark	RCT	III	83	3L Saline	Hartmann's	3

Prospective RCTs since 2009

				L	aparoscopic la	ivage				
		D. a. J. a. u				l	n (%)			
Source	No.	length of		Reope	rations		Percutaneous	Patients	Deaths -	Diverticulitis
		stay (days)	Total	With resection	For Infection	Other indication	abscess drainage	with stoma	all causes	related deaths
Schultz, 2015 ¹⁰	74	6.5	15 (20.2)	*	10 (13.5)	5 (6.8)	8 (10.8)	11/64 (17.2)	6 (8.1)	4 (5.4)
Vennix, 2015 ¹¹	46	8	9 (19.6) ⁺	8 (17.4) ⁺	9 (19.6) ⁺	0 ⁺	9 (19.6)†	9 (19.6) ⁺	2 (4.3)†	2 (4.3) ⁺
Angenete, 2016 ¹³	38	6	5 (13.2) [†]	*	4 (10.5) ⁺	1 (2.6) [†]	*	1 (2.6) ⁺	3 (7.9)	*
		-	_		Colon resecti	ion				
						l	n (%)			
Source	No.	Median length of		Reope	rations		Percutaneous	Patients	Deaths -	Diverticulitis
		stay (days)	Total	With resection	For Infection	Other indication	abscess drainage	with stoma	all causes	related deaths
Schultz, 2015 ¹⁰	70	7.5	4 (5.7)	*	0	4 (5.7)	2 (2.9)	43/62 (69.4)	5 (7.1)	2 (2.9)
Vennix, 2015 ¹¹	42	10	3 (7.1)*	0	0†	3 (7.1)*	0†	35 (83.3) ⁺	1 (2.4)*	1 (2.4)†
Angenete, 2016 ¹³	35	9	6 (17.1) [†]	*	3 (8.6) ⁺	3 (8.6) ⁺	*	35 (100) ⁺	4 (11.4)	*

Lap Lavage vs. Resection Summary of RCTs; F/U 90 days

						Tests for heterogeneity		Anticipated absolute effects		
Outcome∣	No. of studies	No. of patients	Pooled RR	95% CI	р	l ²	Ρ	Assumed risk with colon resection* (%)	Corresponding risk with laparoscopic lavage (%)	
Total reoperations	3	305	2.07	1.12, 3.84	0.021	54%	0.113	8.8%	9.5% higher with lavage	
Reoperations for infection	3	305	5.56	1.97, 15.69	0.001	65%	0.057	2.0%	9.3% higher with lavage	
CT-guided abscess drainage	2	232	6.54	1.77, 24.16	0.005	0%	0.326	1.8%	9.9% higher with lavage	
Stoma formation	3	288	0.18	0.12, 0.27	<0.001	65%	0.056	81.4%	66.8% lower with lavage	
Mortality	3	307	1.03	0.45, 2.34	0.95	0%	0.759	6.8%	0.2% higher with lavage	

				Laparosc	opic lavag	e n		_	Colon resection n							
Source No. LC	Reoperations			s		Pts.				Reoperations				Pts.		
	No.	LOS	Total	For Infection	Other indic.	Perc. drain	with stoma	Deaths	No.	LOS	Total	For Infection	Other indic.	Perc. drain	with stoma	Deaths
Karoui, 2009 ¹	35	8	1	0	1	1	*	0	24	17	2	0	2	1	0	0

Observational Studies

Lots of Them!

Most under 50 patients of Lavage!

| Rade,
2014 ¹⁴ | 71 | 12 | 11 | 11 | * | * | * | 4 | N/A |
|-----------------------------------|----|----|----|----|---|---|---|---|-----|-----|-----|-----|-----|-----|-----|-----|
| Sorrentino,
2015 ¹⁵ | 63 | 7 | 6 | 6 | 0 | * | * | * | N/A |
| Horesh,
2015 ¹⁶ | 10 | 11 | 0 | 0 | 0 | 3 | 1 | 0 | N/A |

In patients with purulent or feculent peritonitis, operative therapy without resection is generally not an appropriate alternative to colectomy. Grade of Recommendation: Strong recommendation based on lowquality evidence, 1C

RACTICE PARAMETERS

Practice Parameters for the Treatment of Sigmoid Diverticulitis

Daniel Feingold, M.D. • Scott R. Steele, M.D. • Sang Lee, M.D. • Andreas Kaiser, M.D. Robin Boushey, M.D. • W. Donald Buie, M.D. • Janice Frederick Rafferty, M.D.

Prepared by the Clinical Practice Guideline Task Force of the American Society of Colon and Rectal Surgeon

Primary Anastomosis for Emergency Diverticulitis Surgery

• Is it Feasible?

Absolutely

Are Outcomes Improved?
 Some
 Pern

Permanent stoma
? Mortality
? Morbidity
If they leak

• Is there a Downside?

Is it the Future? Surgeon Judgment
 Abbas S. Int J Colorectal Dis, 2007.

Wash, Drain or Divert: Have the New Treatments Made Hartmann's Procedure Obsolete?

Conclusions

- Primary anastomosis feasible with good surgical judgment
- Protective ileostomy likely better than Hartmann
- Laparoscopic lavage
 - Evolving indications and role
 - Smoldering / Undrainable abscess / other?
 - Best technique remains to be determined

Cleveland Clinic

Every life deserves world class care.