ENDOLUMINAL COLONIC STENTING

MAJID BASSUNI

King's College Hospitals London and Dubai

COLONIC STENT...

... « bridge to surgery »
more frequent application

... for palliation in case of tumoral obstruction less invasive for high risk elderly patients

... in benign diseases

to avoid difficult surgical procedures or surgery in emergency

Versus the Gold Standard ... SURGERY !!

DIFFICULT AND CONTROVERSIAL SITUATIONS

Right colon

Extrinsic compression

Low rectum

Long-term applications

RIGHT COLON...

Possible!

SAME TECHNICAL AND CLINICAL SUCCESSES than FOR DISTAL COLON (> 90%)

Repici et al. GIE 2007 (21 patients)

Yao et al. World J Gastro 2011 (81 patients)

EVEN EASIER THAN FOR DISTAL COLON ?!...

Morbidity 27.2% vs 12.5% (p=0.06)

Small AJ et al. GIE 2010 (233 patients)

LOW RECTUM...

Poor tolerance if distal tumor margin – anus < 5 cm

Only one retrospective comparative study (30 patients)

Rectal syndrom and pain

62.5% (stent < 5 cm) vs 7.1% (stent > 5 cm) (p = 0.011)

Analgesics needed

Song Hy et al. GIE 2008

To be avoided ...

LONG TERM PALLIATION...

SAME RATE of TECHNICAL & CLINICAL SUCCESSES (90%)

MEAN PATENCY: 6 MONTHS

Small AJ et al. GIE 2010

168 patients with stent for palliation

Mean patency: 145 days

Migration: 5%

108/122 (88.5%) had a patent stent until death

EXTRINSIC COMPRESSION...

CONTROVERSED RESULTS

Case-control study

Keswani RN et al. GIE 2009

EXTRINSIC COMPRESSION...

CONTROVERSED RESULTS

Case-control study

F/E +

Moon SJ et al. Dig Dis SCi 2013

EXTRINSIC COMPRESSION...

CONTROVERSED RESULTS

Case-control study

Kim JY et al. Surg Endosc 2013

DIFFICULT AND CONTROVERSIAL SITUATIONS

Right colon surgery feasible

Extrinsic compression possible

Low rectum no

Long-term applications still a need?

No. of stenting procedures and stricture location		Stricture length ≥ 12 cm	> 1 Stent required	Technical failure	Decompression failure
Rectum	5	3	1	0	1
Rectosigmoid	20	10	3	1	1
Sigmoid colon	30	14	3	2	0
Descending colon	8	4	2	1	0
Transverse colon/splenic flexure	5	5	0	0	0
Ascending colon/hepatic flexure	1	0	0	0	0
Multiple strictures-proximal sigmoid/rectosigmoid	2	0	0	2	0

W Baraza, F Lee, S Brown and M Bassuni, Combined endo-radiological colorectal stenting: A prospective 5 years clinical evaluation. Colorectal Disease, 10, 901–906

Complication	Location of stent	Occurrences, n (%)	
Overgrowth	Rectum (1)	6 (8%)	
Overgrowth	Rectosigmoid (1)	0 (870)	
	Sigmoid (3)		
	Descending colon (1)		
Migration	Rectosigmoid (3)	4 (6%)	
	Descending colon (1)		
Fistulation			
Rectovaginal	Rectum, (1) (colorectal cancer)	3 (4%)	
Colovesical	Rectosigmoid (1) (endometrial cancer)		
Enterocolic	Proximal sigmoid (1) (endometrial cancer)		
Fracture	Rectum (1)	2 (3%)	
	Rectosigmoid (1)		
Tenesmus	Rectosigmoid (2)*	2 (3%)	

W Baraza, F Lee, S Brown and M Bassuni, Combined endo-radiological colorectal stenting: A prospective 5 years clinical evaluation. Colorectal Disease, 10, 901–906

Malignancy (n)	Complications	Technical failure	Clinical failure
Prostate (3)	None	0	2
Endometrial (2)	Proximal migration (1)	0	0
Ovarian (1)	None	1	n/a
Metastatic gastric (1)	Tenesmus and urgency	0	0

W Baraza, F Lee, S Brown and M Bassuni, Combined endo-radiological colorectal stenting: A prospective 5 years clinical evaluation. Colorectal Disease, 10, 901–906

Technique

- Conscious sedation (Midazolam and Buscopan)
- Left Lateral position under image intensifier (C Arm)
- Colonoscopy (Olympus GIF H260 scope with 4.2 mm working channel)
- Experienced Radiologist always present (Paul Spencer)

20th Annual EGCRS- Cairo 2018

20th Annual EGCRS- Cairo 2018

20th Annual EGCRS- Cairo 2018

20th Annual EGCRS- Cairo 2018

20th Annual EGCRS- Cairo 2018

20th Annual EGCRS- Cairo 2018

20th Annual EGCRS- Cairo 2018

20th Annual EGCRS- Cairo 2018

Comparison of efficacy between uncovered and covered self-expanding metallic stents in malignant large bowel obstruction: a systematic review and meta-analysis

Comparison of efficacy between uncovered and covered self-expanding metallic stents in malignant large bowel obstruction: a systematic review and meta-analysis, Volume: 14, Issue: 7, Pages: e367-e374, First published: 27 April 2012, DOI: (10.1111/j.1463-1318.2012.03056.x)

Comparison of efficacy between uncovered and covered self-expanding metallic stents in malignant large bowel obstruction: a systematic review and meta-analysis

	Uncovered Covered			Covered	Mean difference			Meam difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95% CI	IV, random, 95% CI	
Patency duration										
Kang 2002	146.25	112.93	4	82.93	102.57	15	0.8%	63.32 [-58.92, 185.56]	1	
Choi 2007	165	25	14	157	33	23	34.4%	8.00 [-10.80, 26.81	i -	
Lee 2007	89	25	16	67	15	15	58.6%	22.00 [7.59, 36.41	·	
Park 2010	180	266.4	55	219	323.4	52	1.0%	-39.00[-151.62, 73.62		
Park 2011	88.5	84.9	73	96.8	123	30	5.2%	-8.30 [-56.43, 39.83	Bj	
Subtotal (95% CI)			162			135	100.0%	15.34 [4.31, 26.37	7]	
Heterogeneity: $Tau^2 = 0.00$; $Chi^2 = 3.82$, $df = 4$ ($P = 0.43$); $I^2 = 0\%$										
Test for overall effect: Z	= 2.73 (P)	= 0.006)								
									-200 -100 0 100 200	
									-200 -100 0 100 200	
Favours covered Favours uncov									Favours covered Favours uncovered	

BENIGN COLORECTAL STENOSIS AND STENTS: RESULTS (1)

TO BE AVOIDED: 1- DIVERTICULAR STENOSIS
2- UNCOVERED STENTS

		STENT TYPE	Diverticular stenosis	Technical success	Cinical success	Migration	Severe complications
Small AJ et al Surg Endosc 2008	23	UNCOVERED	16/23	100%	95%	9%	38%
Forshaw MJ et al. Colorectal Dis 2005	11	UNCOVERED	3/11	81%	81%	10%	36%
Geiger TM et al. Int J Colorectal Dis 2008	53 (case review)	UNCOVERED (84%)	19/53			43%	21%
Keränen et al. Scand / Gastro 2010	21	UNCOVERED (57%)	10/21	100%	76%	38%	28%
Vanbiervliet et al. Endoscopy 2013	43	COVERED	7	100%	81%	63%	\$%

! Uncovered stent and diverticulis!

BENIGN COLORECTAL STENOSIS AND STENT : RESULTS (2)

BENIGN COLORECTAL STENOSIS AND STENT : RESULTS (3)

Mean duration of calibration 26.6 days ± 28.6 [1-130]

Mean delay for migration

14.6 days ± 7.1 [1-59] Dilation or medical treatment
12%

New stent
41%

In case of recurrence...

20th Annual EGCRS- Cairo 2018

BENIGN COLORECTAL STENOSIS and STENT: RESULTS (4)

Mean F-U 16.3 months ± 15,5 [1-55]

Recurrence in 23 patients (53%)

Reccurences occur within 3 months

Recurrence independent from migration

DELAY SINCE THE MIGRATION

BENIGN COLORECTAL STENOSIS and STENT: RESULTS (5)

Review, 130 articles Currie A et al, Colorectal Dis 2013

Diverticulitis: 54% (66/122)

Technical success: 94% (115/122)

Clinical success: 87% (108/120)

Perforation rate: 12% (15/122)

Reobstruction rate: 14% (17/122)

Stoma avoided in 48% (23/48) of bridge to surgery patients

Perforation and stoma avoidance in the bridge to surgery group were worse with diverticulitis aetiology

