

EMERGING TECHNOLOGY IN FISTUL& M&N&GEMENT

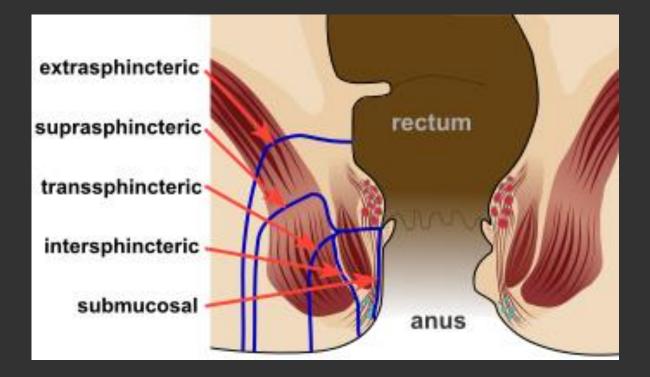
(VAAFT, Stem cells, FiLaC)

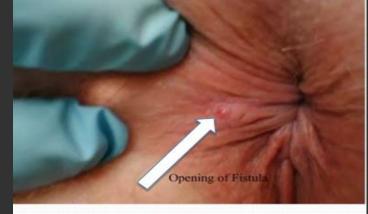
Sabry A. Badr (MD. PhD.)

Professor of General Surgery, Mansoura University, Egypt

Disclosure

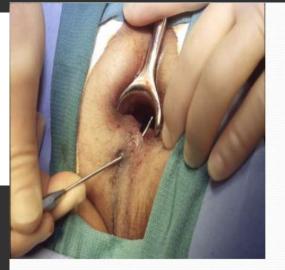
None to be declared.




Fistula in Ano:

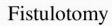
· Abnormal connection between epithelial surface of anal canal and

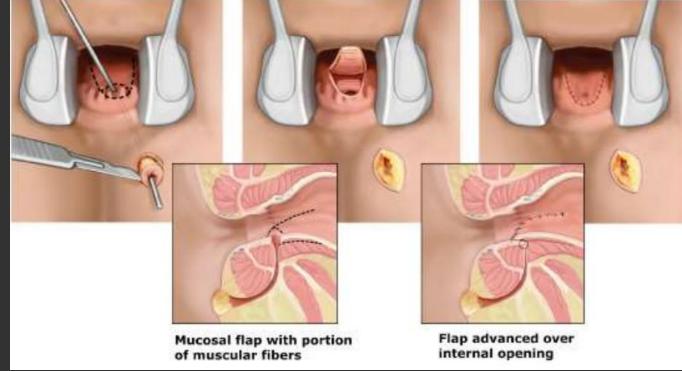
perianal skin



Fistula treatment options:


STANDOURA UNIVERSITY.

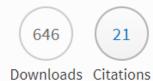

- 1. Fistulotomy.
- 2. Fistulectomy
- 3. Staged fistulotomy, fistulectomy
- 4. Mucosal advancement flaps
- 5. Plugs and adhesives
- 6. LIFT procedure
- 7. Fistula clip closure
- 8. PERFACT procedure (proximal superficial cauterization, emptying regularly fistula tracts and curettage of tracts)



Evolution of Fistula management

World Journal of Surgery

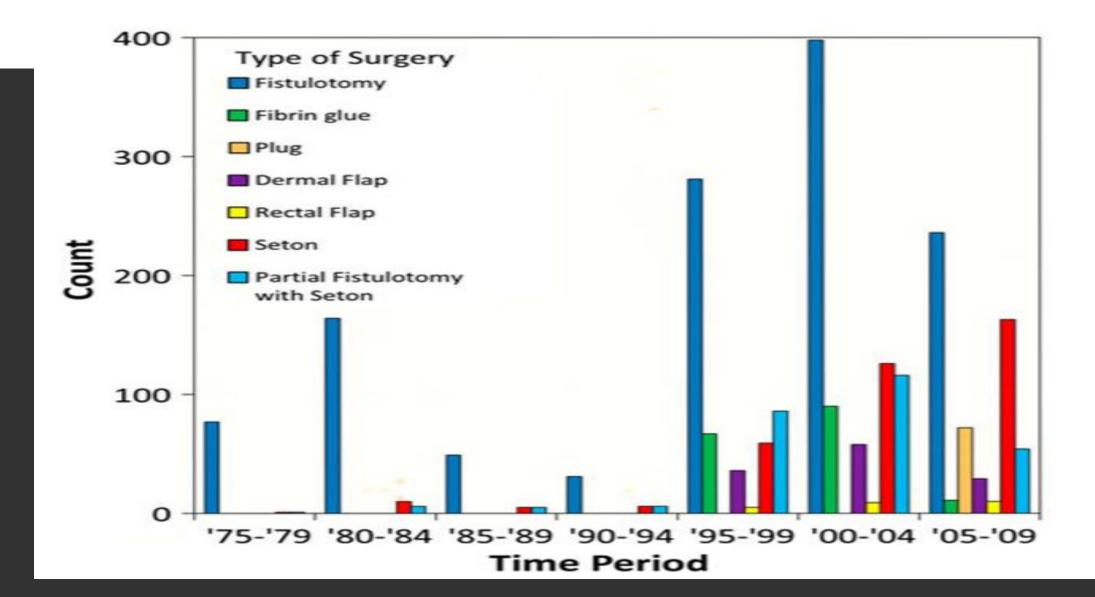
May 2012, Volume 36, <u>Issue 5</u>, pp 1162–1167 | <u>Cite as</u>


Evolution of Treatment of Fistula in Ano

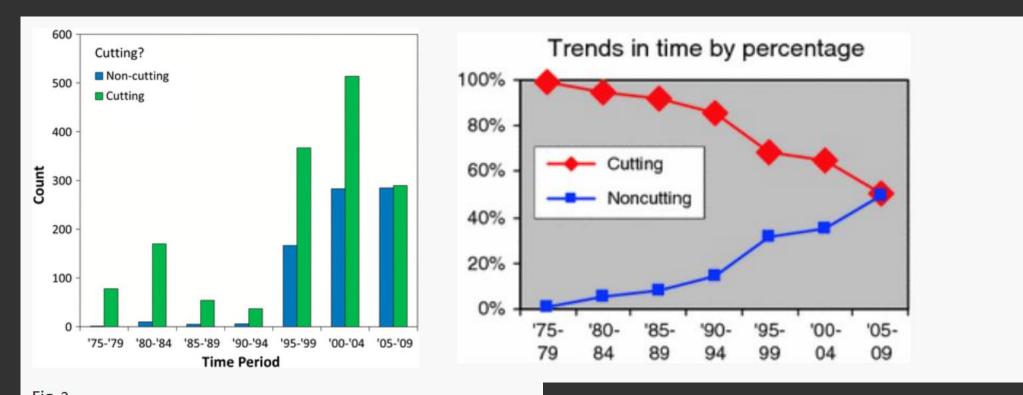
Authors and affiliations Authors

J. Blumetti, A. Abcarian, F. Quinteros, V. Chaudhry, L. Prasad, H. Abcarian

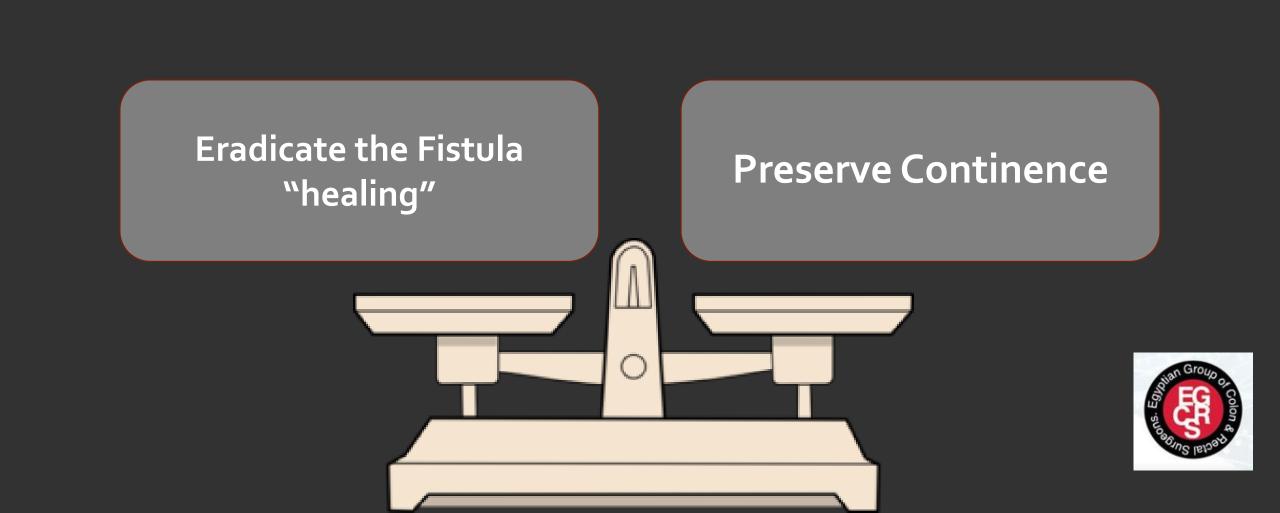
First Online: 24 February 2012



Evolution of Fistula management

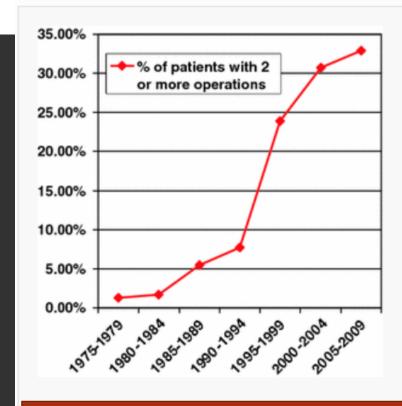


Evolution of Fistula management



Principles of fistula treatment:

All Emerging techniques lean towards sphincter preservation



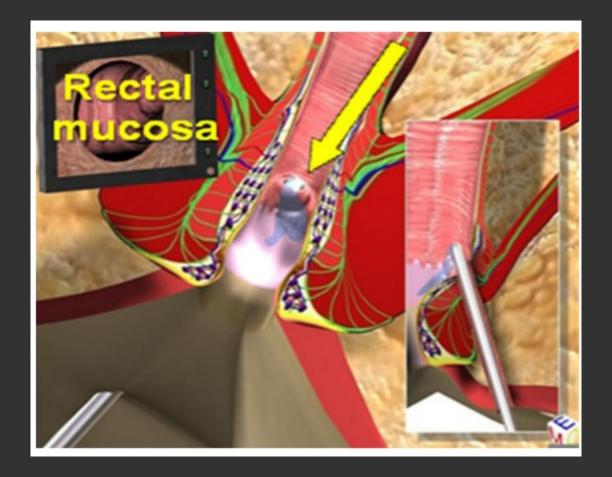
Evolution of fistula treatment

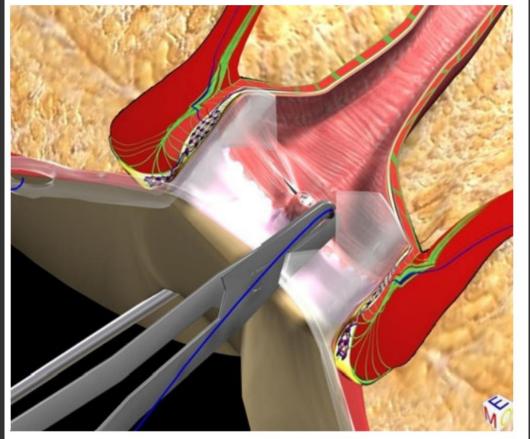
The incidence of re-operation rose:

"In these litigious times, recurrence or persistence of a fistula is surely preferable to incontinence."

Herand Abcarian

VAAFT (Video Assisted Anal Fistula Treatment)




VAAFT (Technique)

Diagnostic phase: localization of I.O.

Therapeutic: Closure of I.O. and fulguration of the tract

VAAFT (Results)

- 98 patients (74 males 27 females) median Age: (2 years
- All cryptc
- 94 patien
- Classifica
 - 74 Hig
 - 9 extr
 - 6 supi
 - 9 hors

- 72 patients achieved primary healing (73.5%) within 2-3 months.
- 26 patients → No healing (26.5%)
- 19/26 accepted re-VAAFT:
 - 9/19 healed
 - 6/19 recurrence
 - 4/19 still under observation.
- Overall healing rate 87.1%

Median follow up 13 months (range 6-60 m)

Further reports with similar results

Sandoura University

ISSUES AND ARTICLES

ABOUT THIS JOURNAL

FOR AUTHORS

SUBSCRIBE

Minerva Chirurgica 2018 April;73(2):142-50

DOI: 10.23736/S0026-4733.18.07390-X

Copyright © 2018 EDIZIONI MINERVA MEDICA

language: English

Video-assisted anal fistula treatment in the management of complex anal fistula: a single-center experience

Alessandro STAZI 1, Paolo IZZO 2, Francesco D'ANGELO 3, Monica RADICCHI 1, Manuele MAZZI 1, Federico TOMASSINI 3, Luciano IZZO 2, Stefano VALABREGA 2

¹ Department of General Surgery, Colorectal Pelvic Center, Madonna delle Grazie Clinic, Velletri, Rome, Italy; ² Pietro Valdoni Department of Surgery, Sapienza University, Rome, Italy; ³ Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University, Rome, Italy

Primary Healing
77%
Overall after reVAAFT
92.3%

<u>Techniques in Coloproctology</u>

June 2016, Volume 20, <u>Issue 6</u>, pp 389–393 | <u>Cite as</u>

An experience with video-assisted anal fistula treatment (VAAFT) with new insights into the treatment of anal fistulae

Authors

Authors and affiliations

I. Seow-En, F. Seow-Choen , P. K. Koh

Short Communication
First Online: 08 April 2016

9

588

5

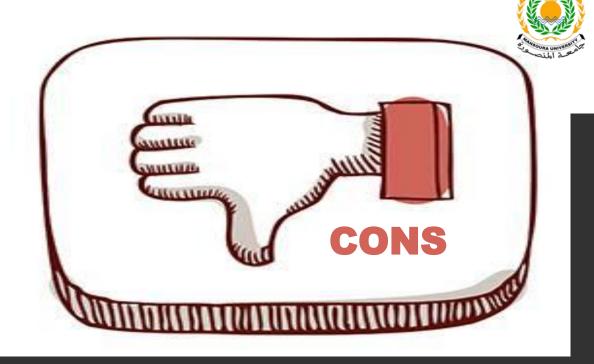
70.7%
Overall after re-VAAFT
83%

Pooled results and meta-analysis

- 11 studies (788 patients, 66.5% complex fistula, 18.4% had prior surgery)
- Weighed mean for Internal opening detection in 93.3% of the patients.
 - Weighed mean of recurrence <u>17.7%</u>
 - Weighed mean of complications 4.3% (all minor)
 - No continence affection reported in any study.
 - Median follow up 9 months

Sameh Hany Emile 1

Hossam Elfeki 1 2


Mostafa Shalaby 1

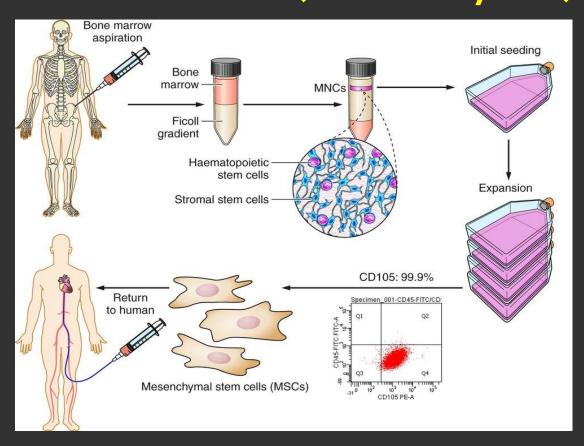
Ahmad Sakr 1

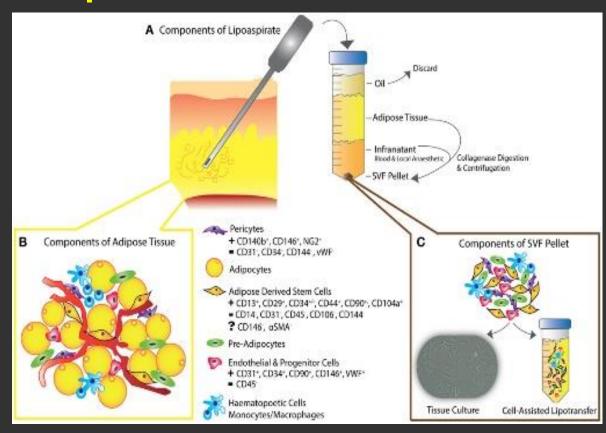
- Colorectal Surgery Unit, Department of General Surgery, Mansoura Faculty of Medicine, Mansoura University Hospitals, Mansoura City, Egypt
- 2. Department of Surgery, Aarhus University Hospital, Aarhus, Denmark

VAAFT summary


- Continence preservation.
- Visualization of the I.O. and secondary tracts.
- Promising healing rates.
- Early return to activity

- Relatively expensive technology.
- No RCTs.
- Longer operative time.
- Learning curve ??



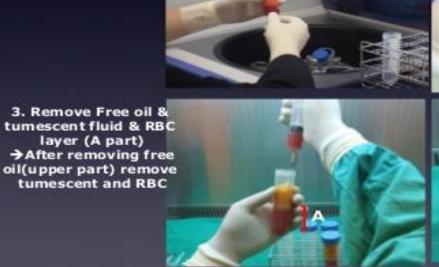

Source of Stem Cells

Bone marrow (mesenchymal)

Adipose tissue (Fat)

Stem Cells (technique simplified)

SAL with standarized

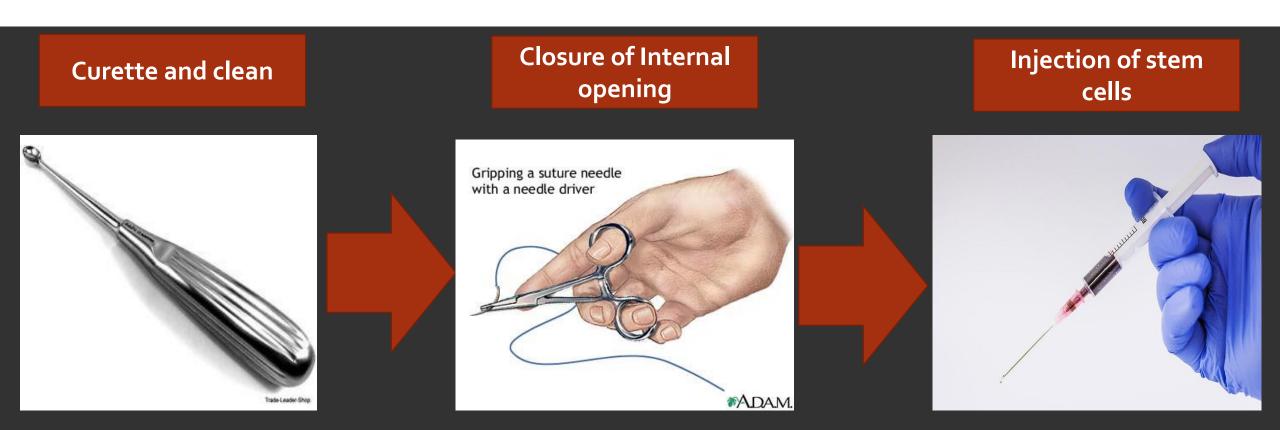

protocol

Liposuction or Aspiration

Centrifugation

Pure fat without tumescence

1. 1000G, 3~5 minutes



Stem cells (continued)

The ASC suspension is injected through a long, fine needle into the tract walls; not deeper than 2 mm.

Stem cells (literature)

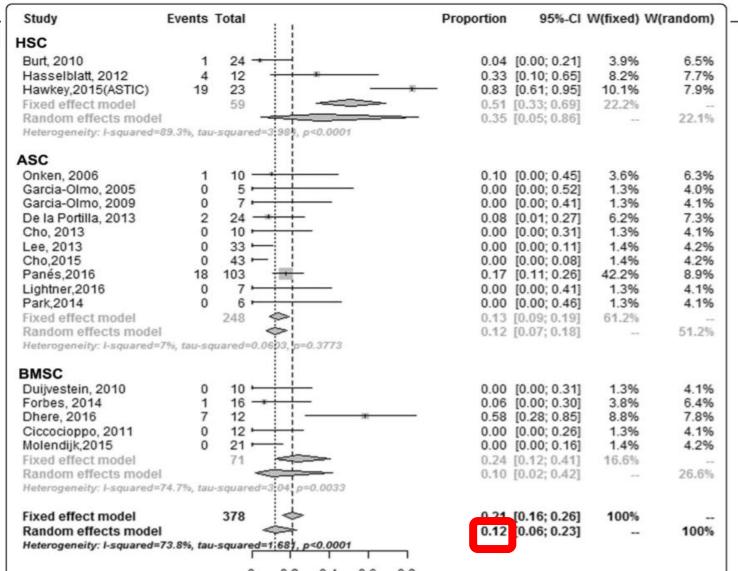
- Most of the studies were on Crohn's fistula, Also some reports on complex fistulas, recurrent fistulas and
 - rectovaginal fistulas.
- All kinds of reports:
 - Phase I/II/III clinical trials.
 - Retrospective.
 - Systematic reviews & meta analysis.
- Adipose or bone marrow derived.
- Autologous or Allogenic.
- Local or systemic injection (IBD).

Stem cells (pooled analysis)

Table 1. Published Clinical Trials and Large Ongoing Phase III Trials Using Stem Cells for the Treatment of Crohn's Perianal Fistula

Authors, Year	Study Design	Source of Cells	Results
Garcia-Olmo et al, 2005 ¹⁰	Phase I clinical study (n = 4)	ASC (autologous)	Complete closure: 50% of patients 75% fistulas
Garcia-Olmo et al, 2009 ¹¹	Open-label, multicenter, phase II study (n = 14)	ASC + fibrin glue (autologous)	Fistula healing: 71% vs 14%
Ciccocioppo et al, 2011 ¹³	Prospective study (n = 10)	MSC (autologous)	Reduction in CDAI, PDAI, and pain/ discharge PDAI scores
Mannon et al, 2011 ¹⁷	Open-label Phase II study (n = 10)	MSC (allogeneic) IV	Reduction in CDAI and fistula drainage
Guadalajara et al, 2012 ¹²	Retrospective follow-up of Garcia-Olmo phase II study (n = 5)	ASC + fibrin glue (autologous)	58% sustained fistula closure at end of follow-up by mean 3 years
Cho et al, 2013 ¹⁸	Open-label, multicenter, dose escalation phase I study (n = 10)	ASC (autologous)	Healing in 50% receiving ≥2× 107 cells/mL
Lee et al, 2013 ¹⁵	Open-label, multicenter, phase II study (n = 42)	ASC (autologous)	Fistula closure in 82% PP, 67% ITT analysis
de la Portilla et al, 201319	Open-label pilot study (n = 24)	ASC (allogeneic)	Complete closure: 56.3%
Ciccocioppo et al, 2015 ¹⁴	5-year follow-up of 2011 study (n = 10)		37% fistula relapse free 4 years later
Cho et al, 2015 ¹⁶	1-year follow-up from 2013 study	ASC (autologous)	Complete closure maintained in 75% at 2 years ITT analysis
Garcia-Olmo et al, 2015 ²⁰	Retrospective, open label (n $=$ 3 with CD)	ASC (allogeneic and autologous)	Healing in 2/3 CD fistula patients
Molendijk et al, 2015 ¹	Double-blind, placebo-controlled study phase II		Healing up to 85%

- 12 clinical trials, phase I/II
- 8 used Adipose derived and 4 Mesenchymal SC.
- All autologous except 2 studies allogenic.
- Healing rates varies from 50%-85% (≈65%)


Create Citation Alert

NOTE. Source: Clinicaltrials.gov.

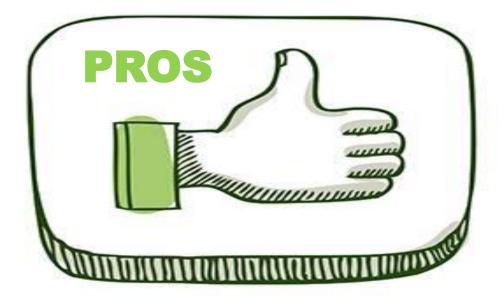
ASCs, adipose-derived stem cells; CD, Crohn's disease; CDAI, Crohn's Disease Activity Index; ITT, intention to treat; IV, intravenous; MSCs, mesenchymal stem cells/mesenchymal stromal cells; PDAI, Pouchitis Disease Activity Index; PP, per protocol; SC, stem cells.

Stem cells (pooled analysis)

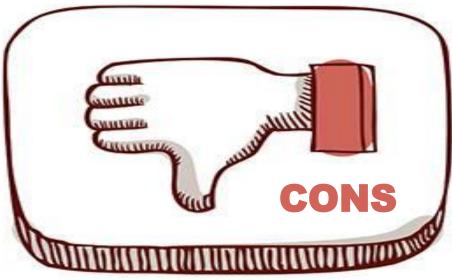
- 21 Studies, 514 patients.
- Follow up >12 months.
- Different source and techniques for SC injection.
 - 57% healing rates.
- 16% clinical recurrence.
- 12% Severe adverse events.

ייכ

Stem cells (pooled analysis)


- Eleven studies (3 clinical trials), 365 patients.
- 9 used adipose derived SC, 2 used mesenchymal SC.
- < Prev
- 6 studies defined healing by clinical definitions and 5 studies included MRI in their healing definition.
- Healing rates varies between 27% 88%
- There were no significant increases in adverse events; p = 0.81
- Lighti
- MSCs were associated with improved healing as compared with control subjects at 24 to
- Disea doi: 1

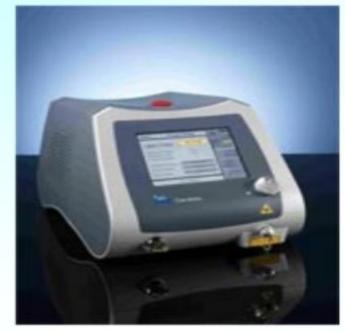
Curre



Stem cells

- Sphincter saving.
- Minor adverse effects.
- Promising results; particularly in Crohn's disease.
- No fancy technology involved.

- Long term follow up ??
- No standardized technique.
- Lack of adequate evidence
 regarding optimal SC origin,
 culturing, dosing, mode of delivery,
 site & frequency of injection.



FiLaC ™ (Fistula laser Closure)

FiLaC

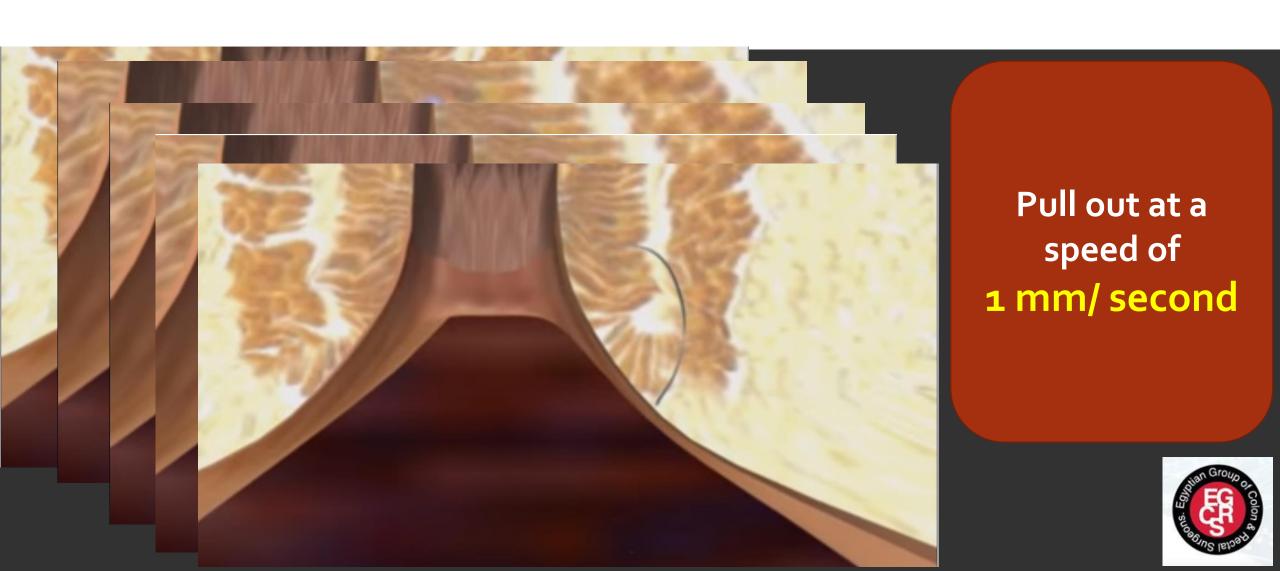
(Fistula Laser Closure)

Diode Laser, 1470 nm

Radial Fiber: acting a 360°

FiLaC ™ (Fistula laser Closure)

 Shrinkage and denaturation effect confined to the lumen.


Easily controllable depending on energy, wave length and duration.

3. Hence, reproducible.

FiLaC ™ (Technique)

FiLaC ™ (Results)

Number of patients	35
Gender (M:F)	20:15
Age (years)	48 (27–76)
Type of fistula	
Intersphincteric	8 (23)
Low trans-sphincteric	8 (23)
Mid	12 (34)
High	6 (17)
Suprasphincteric	1 (3)
Multiple fistulous tracks	3
Previous fistula surgery	25
Previous draining (loose) seton	16
Operative time (min)	20 (6–35)
	(84)

Results	n (%)
Cured	25 (71.4)
Failed	8 (22.8)
Recurrence	2 (5.8)

- 35 patients, different types, including 25 recurrence.
- 71.4 % healing rate.
- 20 minutes operative time.
- Median follow up 20 month (3-35)
- No incontinence.
- No intra operative complications.

Variable	Result
Median age, years (range)	41 (23–83)
Male/female	37/13
Types of fistulas	
Intersphincteric	10
Transsphincteric	34
High transsphincteric	6
Median energy consumption, joules	1,176 (320-6,843)
(range)	90. 125 90 29
Intersphincteric	705 (320–1,780)
Transsphincteric	1,190 (720-3,450)
High transsphincteric	2,360 (1,174-6,843
Median number of days required to	3 (2–22)
return to normal activities (range)	
Median follow-up, months (range)	12 (2–18)
Success rate (%)	41/50 (82%)

- 50 patients (40 Trans-sphincteric).
- 82 % healing rate.
- Median follow up 12 month (2-18)
- No incontinence.
- No complications.

FiLaC TM (Results)

Kaplan_Meier: Freedom from failure or recurrence

Table 1 Patient and fistula characteristic	Table 1	eristics	charact	fistula	and	Patient	1	Table
---	---------	----------	---------	---------	-----	---------	---	-------

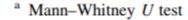

Number of patients	45
Gender (M, F)	21:24
Age (years)	46 (18–78)
Previous fistula surgery	35 (78)
Previous loose seton	24 (53)
Type of fistula	
Intersphincteric	7 (15)
Low transsphincteric	7 (15)
Mid transsphincteric	19 (42)
High transsphincteric	10 (22)
Suprasphincteric	2 (4)

Table 2 Results of the FiLaCTM at a median follow-up of 30 (range 6–46) months

Results	n (%)
Cured	32 (71.1)
Failed	11 (24.4)
Recurrence	2 (4.4)

0.	Table 3	Univariate	analysis	of	possible	predictive	factors	(45	79%
	patients)								

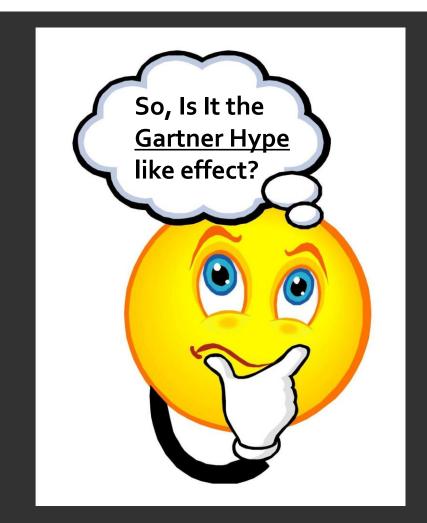
<u>8</u> , pp 4	Factor	Success $(n = 32)$	Failure $(n = 13)$	p	
ser	Sex Non Males $(n = 21)$	signific	ant 10 (28.6 %)	0.6ª	results
ive	Females $(n = 24)$ Age (years)	Median	30 mont	hs (6	-46)
	Median (range)	føllow u	D ⁴⁷ (27–78)	0.45 ^b	
thors an	Previous surgery for fistula Yes $(n = 35)$	25 (71.4 %)	10 (28.6 %)	0.6 ^b	
	No $(n = 10)$	7 (70 %)	3 (30 %)		
Geraci, L	Seton use prior to FiLaC TM			0.20^{c}	
	Yes (n = 24)	19 (79 %)	5 (21 %)		
	No $(n = 21)$	13 (62 %)	8 (38 %)		

b Fisher's exact test

0.9

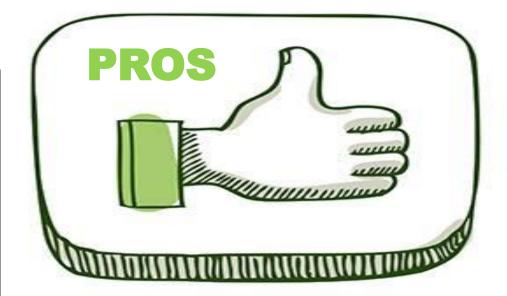
Chi-square test

Fig. 2 Kaplan-Meier analysis of freedom from failure/recurrence


Laser ablation for fistula (Results)

N	haracteristic Study	No. of patients	Recurrent perianal fistula patients, n (%)	Data Treatment type	Energy, watts	Morbidity, n (%)	Follow-up period, mean, mo	Success rate, %
c	Study	patients	nstala patients, 11(70)		watts	11 (70)	mean, mo	rate, 70
i L	Wilhelm ¹	11	NA	FiLaC + conventional closure of the internal orifice	13	0	7.4	82
F	Giamundo et al ⁴	35	25 (71)	FiLaC + loose seton as a bridge to laser therapy in some patients	10–13	17 (49)	20	71
S	Oztürk et al ²	45	NA	FiLaC + loose seton as a bridge to laser therapy in some patients	15	0	12	82
II T	Giamundo et al ³	50	35 (78)	FiLaC + loose seton as a bridge to laser therapy in some patients	12	NA	30	71
S	Wilhelm et al ²⁰	117	16 (14)	FiLaC + external and internal orifices were excised, followed by the preparation of a flap + loose seton s a bridge to laser therapy	13	3 (3)	25	64
	Present study	103	53 (52)	in some patients FiLaC only	12	0	28	40

Laser ablation for fistula (Results)



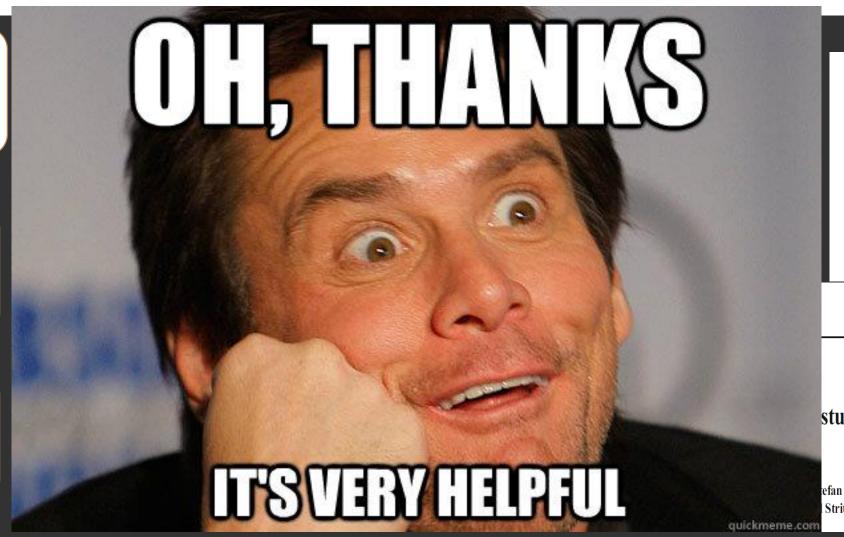
Laser ablation

CONS

- Sphincter saving.
- No adverse effects.
- Promising results.
- Early return to activity.
- Easy to learn and reproduce.


- Relatively expensive.
- No RCTs.
- Current evidence on cryptoglandular fistulas, No available evidence on Crohn's.
- ? Early to judge.

So, what do the available guidelines say?


So, what do the guidelines say?

VAAFT

Stem cells

Laser

2017

stula (second

refan Post⁵ • | Strittmatter⁹

So, How to decide?

Ducasdanas	Hadina	Explain in details, and led decide? Incontenince	et the patient
Procedures	Healing		
VAAFT	70-77%	o %	
Stem Cells	27-88%	o %	~
Laser	40-82%	o %	

Summary

- The more you cut, the better healing rates, but the more complication and incontinence.
- Emerging procedures lean towards sphincter preservation at the expense of healing rates.
- VAAFT, Stem cells and Laser showed very promising healing rates and very low complications.
- Time will prove/disprove the Gartner hype cycle like effect.
- Still no helpful guideline recommendation or consensus regarding these procedures.
- Treatment should be tailored according to weighing benefits and risks for every patient, explain in details and let the patient decide.

