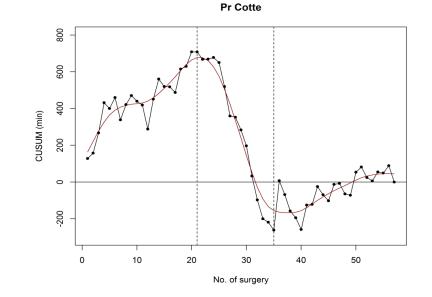


Robotic surgery training

Pr Eddy COTTE Lyon-Sud University Hospital

France



The learning curve

• Learning curve of a new technique :

- Sometimes frightening
 - Length ?
 - Difficulty ?
 - Worth clinical results at the beginning ?

• Especially for surgeon expert in other technique : laparoscopy

- 3 phases :
 - Simulator
 - Animal / cadaveric lab
 - Clinical phase
- Each phases are essential

• Learning process is now well codified and supported by Intuitive

• Simulator

- Allows to train directly with the machine
- Allows to already have automatism with the different buttons, pedals and functions at the beginning of clinical phase
- Avoids to "fight" with the machine during the first cases
- At least 8-10 h before starting human case
- It is Essential +++

- Animal/cadaveric lab
 - Port placement
 - Seems a difficulty at the beginning
 - Easy with Xi
 - Force feedback
 - Absent with the robot
 - Need to be careful during the first cases
 - Rapidly not a problem
 - Visual force feedback ++++

- Clinical phase
 - *Key term = regularity*
 - 2 philosophies
 - Do all consecutive cases with robot
 - Select easy cases at the beginning
 - Aim : at least 1 case/week

Clinical phase

	All consecutive cases	Select cases
	Go rapidly through learning curve	Learn progressively
Advantages	See faster the advantages of robotic approach with difficult cases	Not be disapointed at the beginning by difficult cases
		Not be disapointed by long intervention at the beginning (you and your team)
Disadvantages	Have long intervention at the beginning	Have only « easy cases » at the beginning
	Be d isapointed by difficult cases	wich are normally done easily and rapidly by laparoscopy and now with some difficulty and slowly with robot
	Think robotic learning is difficult although it is the case that is difficult	Do not see any advantages of the robot vs lapaoscopy

Clinical phase

• If you are the first robotic surgeon in your team :

- You don't have so much colorectal surgery
 - -> Do all consecutive cases to have 1 case/week at least
- You have enough colorectal cases
 - -> Do what you suppose will be the best for you AND your team
- If you are not the first, a good option would be :
 - Do your *easy cases by yourself*
 - Learn difficult cases by *modular approach* with your robotic colleague : performing only a part of the operation: splenic flexure, vessels division, TME, ... (interest +++ of dual console)

My philosophy

- I was the first robotic surgeon of my team
- We had enough colorectal cases (>300/year)
- My choice :
 - Do all consecutive cases
 - To go rapidly through the learning curve
 - And because we were involved in a prospective trial with Intuitive
 - My first case : low anterior resection with intersphincteric resection !!

Proctors can help you

During the clinical phase, it's important :

- To see expert robotic surgeons in their hospitals
 - At the biggining (ports placement, tips and tricks, ...)
 - With some members of your team : nurses, assitant, ...
 - Each time you want to start a new procedure (right colectomy with CME,...)
- To do some procedures in your hospital with the help of a proctor
 - After few cases
 - Or if you have some difficulties (splenic flexure, ...)
 - Dual consols +++
- Proctoring is part of the learning process and supported by Intuitive

How to go safely through the learning curve

2 key points :

- Simulator +++
- Regularity during the clinical phase

Learning curve study

• 4 centers in France :

Clermont-Ferrand; Bordeaux; Lyon; Montpellier

- Prospective robotic colorectal studies : ROBOT-CR studies
- 1324 patients included from jan 2018 to Feb 2021

Learning curve study

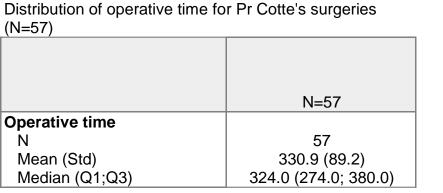
Selection of an homogeneous population :

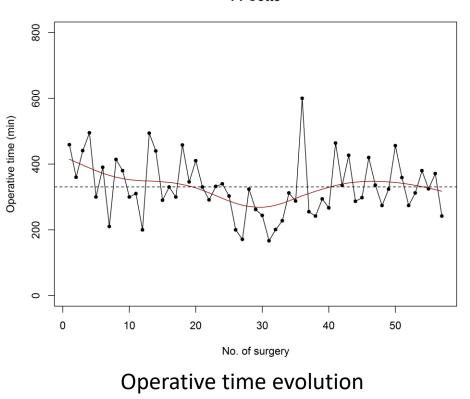
- Inclusion criteria:
 - LAR with TME for rectal adenocarcinoma
 - With low colorectal or coloanal anastomosis
- Exclusion criteria:
 - Rectal cancer reccurence
 - Any associated resection
 - LAR after local excision
 - Surgeon already expert in robotic surgery

3 centres

- 991 robotic colorectal procedures
- 483 for rectal cancer
- 174 patients selected

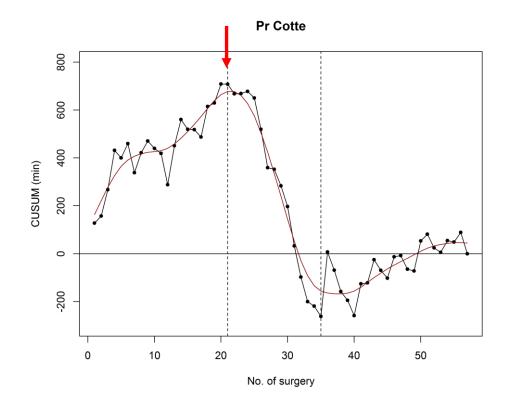
Methods


• 2 endpoints for the learning curve:


- Operative time (skin to skin, min)
- Conversion rate
- Learning curves estimation \rightarrow 2 methods
 - Continuous criteria: CUSUM
 - Binary criteria: **RA-CUSUM**

Learning curves LAR /TME – Operative time

- 57 procedures ٠
- Mean operative time : 330 min ٠


	N=57		
Operative time			
N	57		
Mean (Std)	330.9 (89.2)		
Median (Q1;Q3)	324.0 (274.0; 380.0)		

Pr Cotte

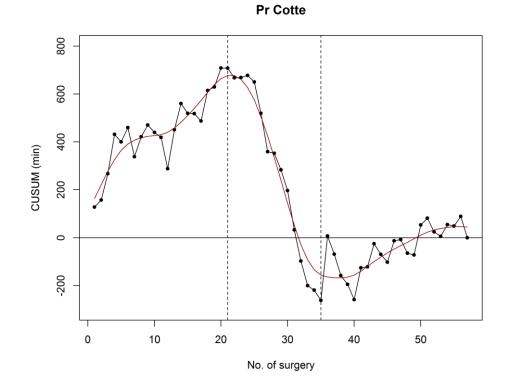
Operative time- CUSUM

1 – 21st : procedures longer than mean
22 – 35th : procedures faster than mean
36 - 57th : stabilisation phase

Patient features:

► no difference between each phases

Surgical features


Operative time (p<0.002)

Operative time	Phase 1	Phase 2	Phase 3
N	21	14	22
Median (Q1-Q3)	360.0 (300; 440)	275.0 (201; 312)	324.5 (274; 380)

• Splenic flexure mobilisation(p=0.008)

Splenic flexure	Phase 1 (N=21)	Phase 2 (N=14)	Phase 3 (N=22)	
mobilization	Flidse I (IN-ZI)	Fildse 2 (N-14)	Fildse 5 (N-22)	
Yes	95%	79%	36%	

Operative time- CUSUM

1 – 21st : procedures longer than mean
22 – 35th : procedures faster than mean
36 - 57th : stabilisation phase

No difference during the different phases for :

- <u>Pathological results</u>: TME grade or CRM
- Post-operative outcomes : LOS, morbidity

TME Grade									P = 0.189
Incomplete	2	(9.5%)	0	(0.0%)	0	(0.0%)	2	(3.5%)	
Complete	19	(90.5%)	14	(100.0%)	22	(100.0%)	55	(96.5%)	
CRM									P = 1.000
<=1mm	1	(4.8%)	1	(7.1%)	1	(4.5%)	3	(5.3%)	
>1mm	20	(95.2%)	13	(92.9%)	21	(95.5%)	54	(94.7%)	
Number of									P = 0.905
postoperative days									
prior to discharge									
Ν		21		14		22		57	
Mean (Std)	1	0.2 (4.8)		8.6 (3.1)	·	10.2 (6.9)		9.8 (5.4)	
Median (Q1;Q3)	7.0	(7.0; 13.0)	8.	0 (7.0; 8.0)	9.0) (5.0; 12.0)	8.0	(7.0; 13.0)	
Grade 3 + morbidity									P = 0.090
at 30 days									
No	15	(71.4%)	14	(100.0%)	17	(77.3%)	46	(80.7%)	
Yes	6	(28.6%)	0	(0.0%)	5	(22.7%)	11	(19.3%)	

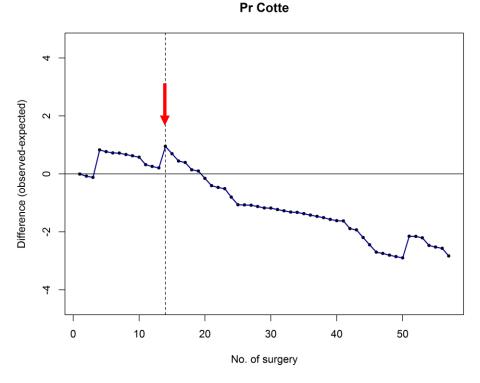
Operative time- Conclusion

- 3 phases
- 1st phase was achieved after 21 procedures
- No degradation of safety and quality criteria (TME grade, CRM, nodes count, morbidity)
- One point doesn't take in account : the number of other procedure (colectomies, rectopexy, ...) performed during the learning curve (for me 55 during the 1st phase)

Conversion – Method

Logistic model for conversion risk estimation (n=174):

• **Risk factors in the final model :** Obesity, male sex, metastasis and previous history of cancer


Learning curves LAR /TME – Conversion – Pr Cotte

Distribution of conversion for Pr Cotte's surgeries (N=57).

	N=57		
Conversion			
No	54	(94.7%)	
Yes	3	(5.3%)	

• 3 Conversion out of 57 LAR (5 %)

Conversion – Pr Cotte

1 – 14^{ème} procedures: Initial phase : 2 conversions

15 - 57^{ème} procedures: Descending phase with low rate of conversion

3/57 conversions (5 %)

Patients features:

Previous abdominal surgery (p=0.049)

	Phase 1 (N=14)	Phase 2 (N=43)
Yes	^{14%} • Obesity (p=0.049)	49%
	Phase 1 (N=14)	Phase 2(N=43)
Yes	0% <u>Surgical features:</u> Conversion (p=0.146)	26%

	Phase 1 (N=14)	Phase 2 (N=43)
Yes	14%	2.3%
•	Splenic flexure mobil	isation(p=0.023)

	Phase 1 (N=14)	Phase 2 (N=43)
Yes	93%	59%

Conversion – Conclusion

- 2 phases
- Learning curve was achieved after 14 procedures
- No degradation of safety and quality criteria (TME grade, CRM, nodes count, morbidity)
- Low number of conversion: learning phases are difficult to identify
- But conversion became exceptional after the 1st phase

What was the more difficult at the beginning during LAR ?

• The splenic flexure !!

- Needs several times of exposition
- Small bowel sometimes makes things difficult coming back all the time in surgical site
- At the upper limit of working zone (one docking with Xi) : sometimes some instruments conflicts
- Needs a systematic approach
- Splenic flexure mobilization each time at the beginning even if not mandatory

Today

- Nearly 300 robotic procedures
- Robotic operative time has became lower than laparoscopic time for LAR
- LOS for LAR has decreased (9.6 days for robot vs 11.3 days for laparoscopy)
- Robotic surgery is now a routine procedure for surgeons and for all the team (nurses, anesthesiologists,...)

CONCLUSIONS

- Robotic surgery can be learned safely (vs TaTME)
- Simulator is essential
- Regularity during the clinical phase is the most important
- Do not neglect the help of proctors
- After around 20 procedures the learning curve is achieved for LAR