Consensus Statement A Consensus Document on Bowel Preparation Before Colonoscopy: Prepared by a Task Force From The American Society of Colon and Rectal Surgeons (ASCRS), The American Society for Gastrointestinal Endoscopy (ASGE), and The Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) Steven D. Wexner, M.D., Task Force Chair, David E. Beck, M.D.² (ASCRS), Todd H. Baron, M.D.³ (ASGE), Robert D. Fanelli, M.D.⁴ (SAGES), Neil Hyman, M.D.⁵ (ASCRS), Bo Shen, M.D.⁶ (ASGE), Kevin E. Wasco, M.D.⁷ (SAGES) Dis Colon Rectum 2006; 49: 792–809 DOI: 10.1007/s10350-006-0536-z © The American Society of Colon and Rectal Surgeons Published online: 02 May 2006 ¹ Department of Colorectal Surgery, Cleveland Clinic Florida, Weston, Florida ² Department of Colon and Rectal Surgery, Ochsner Clinic Foundation, New Orleans, Louisiana $^{^3}$ Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota ⁴ Surgical Specialists of Western New England, PC/Department of Surgery, Berkshire Medical Center, Pittsfield, Massachusetts ⁵ Department of Surgery, University of Vermont College of Medicine, Burlington, Vermont ⁶ Department of Gastroenterology/Hepatology, Cleveland Clinic Foundation, Cleveland, Obio ⁷ Surgical Associates of Neenah, S.C., Neenah, Wisconsin This document appears simultaneously in the June 2006 issues of *Diseases of the Colon & Rectum, Surgical Endoscopy*, and *Gastro-intestinal Endoscopy*. This document was reviewed and approved by the SAGES Board of Governors, the ASCRS Standards Committee and Executive Council, and the ASGE Governing Board. Addendum provides manufacturers' information for all products discussed in this document. Correspondence to: Steven D. Wexner, M.D., Department of Colorectal Surgery, Cleveland Clinic Florida, 2950 Cleveland Clinic Blvd., Weston, Florida 33331, e-mail: mcderme@ccf.org olonoscopy is the current standard method for evaluation of the colon. Diagnostic accuracy and therapeutic safety of colonoscopy depends on the quality of the colonic cleansing or preparation. The ideal preparation for colonoscopy would reliably empty the colon of all fecal material in a rapid fashion with no gross or histologic alteration of the colonic mucosa. The preparation also would not cause any patient discomfort or shifts in fluids or electrolytes and would be inexpensive. Unfortunately, none of the preparations currently available meet all of these requirements. 1,2 A brief history of the evolution of bowel preparation for colonoscopy will be discussed followed by an evidence-based analysis of the various colonoscopy preparations, dosing regimens, and adjuncts currently used. ## **EVOLUTION OF BOWEL PREPARATIONS** Colonoscopy preparations evolved from radiologic and surgical preparations.³ Early preparations used dietary limitations, cathartics, and enemas. Although these preparations cleansed the colon, they were time consuming (48-72 hours), uncomfortable for the patient, and associated with fluid and electrolyte disturbances. 4 A rapid preparation used high-volume (7-12 liters) per oral gut lavage with saline/electrolyte solution. This also was associated with severe fluid and electrolyte shifts and poor patient tolerance. In 1980, Davis et al.5 formulated polyethylene glycol (PEG), an osmotically balanced electrolyte lavage solution. The standard 4-liter dosing regimen given the day before the procedure was established as safe and effective. 6-8 PEG quickly became the "gold standard" for colonoscopy. However, poor compliance related to the salty taste, the smell from the sulfates, and the large volume of fluids required led to modifications of the PEG solutions and their dosing recommendations and reevaluations of other osmotic laxatives (e.g., sodium phosphate [NaP]).9-16 Chang et al.17 developed a method of pulsed rectal irrigation combined with magnesium citrate. These regimens and their use continue to evolve. 18-39 More recent studies have focused on identifying the "ideal" preparation (Table 1), including parameters such as taste, electrolyte supplementation, and the timing and division of doses. With this historic background and the precedent of an American Society for Gastrointestinal Endoscopy (ASGE) technology committee report,⁴⁰ this document reviews the available evidence to create guidelines for bowel preparation before colonoscopy. The various studies in the literature have been graded according to the Levels of Evidence Grade Recommendation scale proposed by Cook *et al.*⁴¹ (Table 2). ## REGIMENS FOR COLONIC CLEANSING BEFORE COLONOSCOPY ## Diet Dosing. Dietary regimens characteristically incorporate clear liquids and low-residue foods during one to four days. Regimens typically incorporate dietary changes and oral cathartic and/or additional cathartic enemas. ⁴² A cathartic, such as magnesium citrate or senna extract, often is used on the day before the procedure. Tap water enemas are administered on the morning of and occasionally on the evening before the procedure. Evidence. Much of the evidence supporting these regimens comes from studies of colon cleansing for radiography. Although the individual components of these preparations vary widely, the combination of dietary restrictions and cathartics has proven to be safe and effective for colonic cleansing for colonoscopy. In a recent study of inpatients undergoing colonoscopy, a clear liquid diet before administration of the bowel preparation was the only diet modification that improved the quality of preparation. Although prolonged dietary restrictions and cathartics are effective, these regimens are less than ideal because of the time commitment required. *Recommendations.* Dietary modifications, such as a clear liquid diet, alone are inadequate for colonoscopy. However, they have proven to be a beneficial adjunct to other mechanical cleansing methods (Grade IIB). ## **Enemas** Dosing. Tap water or NaP enemas are administered on the evening before or the morning of the procedure. For colonic cleansing, they are usually administered in conjunction with dietary restrictions or cathartics. In patients with poor or incomplete cleansing, one or two NaP enemas are useful in washing out the distal colon. Enemas are **Table 1.**Randomized, Controlled Trials | Study (yr) (reference) | No. of
Patients | Study Groups | Main Outcome | |---|--------------------|--|--| | Cohen <i>et al.</i> (1994) ¹³ | 422 | 4l PEG vs. 4l PEG (sulfate-free)
vs. 90 ml NaP | NaP better prep, better tolerated | | Church (1998) ²⁴ | 317 | 4l PEG (night before) vs. 4l PEG (day of procedure) | PEG day of procedure with
better prep | | El-Sayed <i>et al.</i> (2003) ²⁵ | 187 | 3I PEG + liquid diet <i>vs.</i> 3I PEG (split dose) + bisacodyl + minimal diet restriction | Split-dose PEG with better prep, better tolerated | | Adams <i>et al.</i> (1994) ²⁶ | 382 | 4l PEG vs. 2l PEG + bisacodyl | PEG + bisacodyl better tolerated, prep equal | | Henderson et al. (1995) ²⁷ | 242 | 4l PEG vs. 90 ml NaP | Prep similar, NaP better tolerated | | Young et al. (2000) ²⁸ | 323 | 2l PEG + bisacodyl vs. 90 ml NaP | NaP better prep, better tolerated | | Poon <i>et al.</i> (2003) ¹⁹ | 200 | 2l PEG vs. 90 ml NaP | Prep + tolerance similar | | Barclay (2004) ²⁹ | 256 | 135 ml NaP <i>vs.</i> 90 ml NaP | 135 ml NaP better prep, poorer tolerance | | Law et al.
(2004) ³⁰ | 299 | 2-4l PEG vs. 45 ml NaP vs. 90 ml NaP | 90 ml NaP best prep,
better tolerated | | Schmidt <i>et al.</i> (2004) ³¹ | 400 | Na picosulfate vs. NaP | Prep equal, Na picosulfate better tolerated | | Golub <i>et al.</i> (1995) ³² | 329 | 4l PEG <i>vs.</i> 4l PEG + metoclopramide <i>vs.</i> 90 ml NaP | Preps equal, NaP better tolerated | | Balaban <i>et al.</i> (2003) ³³ | 101 | 90 ml NaP (liquid) <i>vs.</i>
40 tabs NaP (tablet) | Liquid NaP better prep, better tolerated | | Aronchick <i>et al.</i> (2000) ³⁴ | 305 | 4l PEG <i>vs.</i> 90 ml NaP
<i>vs.</i> 24–32 tabs NaP | Preps equal, NaP tabs better tolerated | | Kastenberg et al. (2001) ²¹ | 845 | 4l PEG vs. 40 tabs NaP | Prep equal, NaP tabs
better tolerated | | Afridi <i>et al.</i> (1995) ²⁰ | 147 | 4l PEG vs. 90 ml NaP + bisacodyl | Prep equal, NaP + bisacodyl better tolerated | | Frommer (1997) ¹⁴ | 486 | 3l PEG vs. 90 ml NaP (day before)
vs. 90 ml NaP (day before, day of
procedure) | NaP day of procedure best prep,
NaP better tolerated than PEG | | Ell <i>et al.</i> (2003) ³⁵ | 185 | 4l PEG (standard) vs. 4l PEG (sulfate-free) vs. 90 ml NaP | Standard PEG best prep, tolerance similar | | Martinek <i>et al.</i> (2001) ³⁶ | 187 | 4l PEGvs. 90 ml NaP (with/without cisapride) | PEG better prep, NaP better tolerated | | Vanner <i>et al.</i> (1990) ³⁷ | 102 | 4l PEG vs. 90 ml NaP | NaP better prep, better tolerated | | Marschall and
Bartels (1993) ³⁸ | 143 | 4l PEG vs. 90 ml NaP | Prep equal, NaP better tolerated | | Kolts <i>et al.</i> (1993) ³⁹ | 113 | 4l PEG vs. 90 ml NaP vs. 60 ml Castor Oil | NaP best prep, better tolerated than PEG | PEG = polyethylene glycol; NaP = sodium phosphate; tabs = tablets; prep = preparation. useful in washing out the distal segment of bowel in patients with a proximal stoma or a defunctionalized distal colon (*e.g.*, Hartmann's). Various commercial enema preparations are discussed in the adjunct section. *Evidence*. The evidence is mostly anecdotal with no prospective trials (Grade IIIB). *Recommendations.* Use enemas in patients who present to endoscopy with a poor distal colon preparation and in patients with a defunctionalized distal colon. ## High-Volume Gut Lavage Dosing. Per oral gut lavage with high volumes (7–12 liters) of saline solution or balanced electrolyte solutions with or without a nasogastric tube have been used for colonic preparation.
Mannitol was used in early formulations but abandoned secondary to bacterial fermentation into hydrogen and methane gas, which can cause explosion when electrocautery is used. 1,44 | Table 2. | |---| | Levels of Evidence and Grade Recommendation ⁴¹ | | Level | Source of Evidence | |-------|---| | I | Meta-analysis of multiple well-designed, controlled studies, randomized trials with low-false positive and low-false negative errors (high power) | | II | At least one well-designed experimental study; randomized trials with high false-positive or high false-negative errors or both (low power) | | III | Well-designed, quasi experimental studies, such as nonrandomized, controlled, single-group, preoperative-postoperative comparison, cohort, time, or matched case-control series | | IV | Well-designed, nonexperimental studies, such as comparative and correlational descriptive and case studies | | V | Case reports and clinical examples | | Grade | Grade of Recommendation | | Α | Evidence of Type I or consistent findings from multiple studies of Type II, III, or IV | | В | Evidence of Type II, III, or IV and generally consistent findings | | С | Evidence of Type II, III, or IV but inconsistent findings | | D | Little or no systematic empirical evidence | *Evidence.* Although these regimens are effective in cleansing the colon, they are poorly tolerated. Administration of high-volume, unbalanced solutions can result in dramatic fluid and electrolyte shifts. There also have been anecdotal reports of complications after high-volume infusion through a nasogastric tube. ^{38,45} Recommendations. Neither high-volume nor unbalanced solutions, such as mannitol, should be used for colonic preparation (Grade IA). In addition, caution should be exercised when using nasogastric tubes for the administration of any bowel preparation infusion (Grade VD). ## **Rectal Pulsed Irrigation** Per rectal pulsed irrigation in combination with per oral ingestion of 10 oz of magnesium citrate the night before the colonoscopy is another potential preparation. The patient is given a 30-minute infusion of short pulses of warm tap water via the rectum through a rectal tube immediately before the colonoscopy. Disadvantages to this regimen are that it is time consuming and requires skilled nursing to administer, making it expensive to use. *Evidence.* Chang *et al.*¹⁷ developed this regimen and compared it with PEG. No significant differences in quality of colonic cleansing were demonstrated between these two methods. Recommendations. Rectal pulsed irrigation administered immediately before the procedure combined with magnesium citrate given the evening before the procedure is a reasonable alternative to full-volume (4-liters) PEG in those individuals who cannot tolerate per oral administration of PEG (Grade IIB). ## PEG (Electrolyte Lavage Solution) PEG is a nonabsorbable electrolyte solution that should pass through the bowel without net absorption or secretion. Significant fluid and electrolyte shifts are therefore avoided. Large volumes (4 liters) are required to achieve a cathartic effect. Products. - 1. Colyte[®] (Flavors: Cherry, Citrus-Berry, Lemon-Lime, Orange, Pineapple) - 2. GoLYTELY® (Flavor: Pineapple) Dosing. No solid food for at least two hours before ingestion of the solution; 240 ml (8 oz) every ten minutes until rectal output is clear or 4 liters are consumed. Dosage for nasogastric administration is 20 to 30 ml per minute (1.2–1.8 l/hr). 45 Evidence. PEG is more effective and better tolerated than the diet combined with cathartic regimens that were used before 1980. 6-8,46,47 PEG also is safer and more effective than high-volume balanced electrolyte solutions. 48 PEG is safer (less production of hydrogen gas), more effective, and better tolerated by patients than mannitol-based solutions. 49 Although PEG is generally well tolerated, 5 percent to 15 percent of patients do not complete the preparation because of poor palatability and/or large volume.32,50 The additional use of enemas does not offer any improvement in the efficacy of PEG solutions, yet increases patient discomfort.⁵¹ The timing of PEG doses has proven to be important to the quality of the bowel preparation. PEG taken in divided doses (3 liters the evening before and 1 liter the morning of the procedure) was demonstrated to be as effective as and better tolerated than the standard 4-liter dose given one day before the procedure.⁵² The timing of the preparation in relation to the colonoscopy also is significant. In one study, consumption of the PEG solution less than 5 hours before the procedure resulted in better preparation than when given more than 19 hours before the procedure.²⁴ Additional studies have continued to show that divided-dose regimens are superior to singledose regimens. One recent study suggests that the method and/or timing of administration is more important in determining quality of the preparation than is dietary restriction.⁵³ The addition of prokinetic agents to PEG administration has not been shown to improve patient tolerance or colonic cleansing. 36,54,55 Similarly, bisacodyl administration does not significantly improve colonic cleansing or overall patient tolerance when used as an adjunct with full-volume (4 liters) PEG.⁵⁶ PEG is relatively safe for patients with electrolyte imbalance and for patients who cannot tolerate a significant fluid load (renal failure, congestive heart failure, or advanced liver disease with ascites).³⁸ In addition, PEG gut lavage has proven to be the preferred method for colonic cleansing in infants and children. 57-59 Recommendations. PEG is a faster, more effective, and better-tolerated method for cleansing the colon than a restricted diet combined with cathartics, highvolume gut lavage, or mannitol/NaP (Grade IA). PEG is safer than osmotic laxatives/NaP for patients with electrolyte or fluid imbalances, such as renal or liver insufficiency, congestive heart failure, or liver failure and is, therefore, preferable in these patient groups (Grade IA). Divided-dose PEG regimens (2-3 liters given the night before the colonoscopy and 1–2 liters on the morning of procedure) are acceptable alternative regimens that enhance patient tolerance (Grade IIB). Cleansing preparations for colonoscopies performed in the afternoon should instruct that at least part of the PEG solution be given the morning before the procedure (Grade IIB). Enemas, bisacodyl, and metaclopramide as adjuncts to the full volume of PEG have not been demonstrated to improve colonic cleansing or patient tolerance and are, therefore, unnecessary (Grade IIB). ## Sulfate-Free-PEG (SF-PEG) PEG-based lavage solution without sodium sulfate was developed by Fordtran *et al.*⁶⁰ in an attempt to improve the smell and taste of PEG solutions. The improved taste was the result of a decrease in potassium concentration, increase in chloride concentration, and complete absence of sodium sulfate. The elimination of sodium sulfate results in a lower luminal sodium concentration. Therefore, the mechanism of action is dependent on the osmotic effects of PEG. 61 Products. - 1. NuLYTELY® (Flavors: Cherry, Lemon-lime, Orange, Pineapple) - 2. TriLyte[®] (Flavors: Cherry, Citrus-Berry, Lemonlime, Orange, Pineapple) Dosing. No solid food for at least two hours before taking the solution; 240 ml (8 oz) every 10 minutes until rectal output is clear or 4 liters are consumed. Dosage for nasogastric administration is 20 to 30 ml per minute (1.2–1.8 liters per hour). Pediatric (older than age 6 months) dose is 25 ml/kg per hour until rectal effluent is clear. 45 *Evidence.* SF-PEG is less salty, more palatable, and comparable to PEG in terms of effective colonic cleansing and overall patient tolerance.⁹ Recommendations. SF-PEG is comparable to PEG in terms of safety, effectiveness, and tolerance. SF-PEG is better tasting, but still requires the consumption of 4 liters in its standard regimen. SF-PEG is an acceptable alternative lavage solution when a PEG-based lavage solution is required (Grade IIB). ## Low-Volume PEG/PEG-3350 and Bisacodyl Delayed-Release Tablets Low-volume PEG solutions were developed in an attempt to improve patient tolerance. To reduce the amount of volume of lavage solution required and reduce volume-related symptoms, such as bloating and cramping, while maintaining efficacy, bisacodyl and magnesium citrate are administered. Product. 1. Halflytely® (Flavor: Lemon-lime) *Dosing.* Only clear liquids on the day of the preparation. Dosage is four bisacodyl delayed-release tablets (5 mg) at noon. Wait for bowel movement or maximum of six hours; 240 ml (8 oz) every ten minutes until 2 liters are consumed. 45 *Evidence.* Multiple studies have compared full-volume (4 liters) PEG with low-volume (2 liters) PEG combined with magnesium citrate or bisacodyl. These studies have demonstrated equal efficacy of colonic cleansing but with improved overall patient tolerance. ^{26,62} Low-volume PEG without any dietary restrictions has been recently suggested to provide better quality colon cleansing than the whole-dose regimen with no significant impact on tolerability or adverse effects.⁵³ Recommendations. Two-liter PEG regimens combined with bisacodyl (*i.e.*, HalfLytely®) or magnesium citrate are equally effective compared with standard 4-liter PEG regimens but appear to be better tolerated and therefore a more acceptable alternative to the 4 liter PEG regimens. However, the safety of the reduced dose PEG in patients who may not tolerate fluids is still unknown. (Grade IA). Additional studies comparing 2-liter regimens with NaP would be beneficial. ## Low-Volume PEG-3350 and Bisacodyl Delayed-Release Tablets An additional low-volume PEG-3350 without
electrolytes with adjuncts, such as bisacodyl, also has been used. Product. 1. Miralax® Dosing. Clear liquids only the day of the preparation. Dosage is four bisacodyl delayed-release tablets (5 mg) at noon. Wait for bowel movement or maximum of six hours; 240 ml (8 oz) of clear liquid containing one capful of Miralax® every ten minutes until 2 liters are consumed. Evidence. Studies that have compared full-volume (4-liter) PEG with low-volume (2-liter) PEG-3350 combined with bisacodyl have clearly demonstrated an equal efficacy in terms of colonic cleansing and improved overall patient tolerance. *Recommendations.* Two-liter PEG-3350 regimens combined with bisacodyl (*i.e.*, Miralax[®]) are equally effective compared with standard 4-liter PEG (Grade IA). ## Aqueous NaP Aqueous NaP is a low-volume hyperosmotic solution that contains 48 g (400 mmol) of monobasic NaP and 18 g (130 mmol) of dibasic NaP per 100 ml. 63 The NaP osmotically draws plasma water into the bowel lumen to promote colonic cleansing. Significant fluid and electrolyte shifts can occur. NaP must be diluted before drinking to prevent emesis and must be accompanied by significant oral fluid to prevent dehydration. Patients with compromised renal function, dehydration, hypercalcemia, or hypertension with the use of angiotensin-converting enzyme (ACE) inhibitors, or angiotensin receptor blockers (ARBs) have experienced phosphate nephropathy after use of oral NaP solutions. The effects seem to be age related and dose related. Linden and Waye described the pharmacologic properties of NaP. The mean onset of bowel activity was 1.7 hours after the first dose and 0.7 hours after the second dose. The mean duration of action was 4.6 hours after the first dose and 2.9 hours after the second dose. Bowel activity ceased within four hours in 83 percent of patients and within five hours in 87 percent. Product. 1. Fleet® Dosing. Only clear liquids can be consumed on the day of preparation. Two doses of 30 to 45 ml (2–3 tbsp) of oral solution are given at least 10 to 12 hours apart. Each dose is taken with at least 8 oz of liquid followed by an additional minimum of at least 16 oz of liquid. The second dose must be taken at least three hours before the procedure. 45 Evidence. NaP has been compared with fullvolume (4-liter) PEG in multiple studies and has generally been found to be more or equally effective and better tolerated. Colonoscopists also were more likely to rate NaP as more acceptable than PEG-based solutions. 15 A divided-dose NaP regimen in which the first dose is given the evening before the procedure and the second is given 10 to 12 hours later on the morning of the procedure has proven to be more effective than a regimen using two doses of NaP given the day before the procedure or a regimen using full-volume (4-liter) PEG. 14 This finding is consistent with the pharmacologic properties of NaP discussed above. A second splitdose method for morning colonoscopies was demonstrated to be equally effective and as tolerable as standard 4-liter PEG.²⁰ The split dose of NaP was given at 1600 and 1900 hours on the day before a morning colonoscopy. Bisacodyl was used as an adjunct in this regimen and given at 2200 hours the evening before the colonoscopy. In one study, NaP was demonstrated to be more effective in colonic cleansing than Picolax® (sodium picosulfate + magnesium citrate). 66 However, a second study offered conflicting data. 31 Because of its osmotic mechanism of action, NaP can result in potentially fatal fluid and electrolyte shifts, especially in elderly patients, patients with bowel obstruction, small intestine disorders, poor gut motility, renal or liver insufficiency, congestive heart failure, or liver failure. 67 Nephrocalcinosis, as described previously, also is a concern, particularly in those patients who are being treated with ACE inhibitor or ARB. 64 NaP can cause colonic mucosal lesions and ulcerations that may mimic inflammatory bowel disease.⁶⁸ Although contraindicated in children younger than age five years, several studies have assessed NaP in the pediatric population and found the efficacy of NaP similar to PEG. 58,69 The efficacy of NaP in the elderly is similar to younger adults and comparable to PEG. 70,71 The addition of cisapride does not result in any improvement in colon cleansing or patient tolerance.³⁶ Agents that counteract the fluid and electrolyte shifts of NaP have proven to be successful, at least to a limited degree. In one study, the addition of a carbohydrate electrolyte rehydration solution resulted in less intravascular volume contraction.⁷² In another study, E-Lyte® solution was shown to enhance both patient tolerance and the overall efficacy of NaP. 73 The addition of any carbohydrates to a bowel preparation may increase the production of explosive gases. Compared with the 40-tablet NaP regimen, aqueous NaP is better tolerated and more effective.³² Further studies comparing the newer 28 and 32 tablet regimens with aqueous NaP are pending publication. Recommendations. Aqueous NaP colonic preparation is an equal alternative to PEG solutions except for pediatric and elderly patients, patients with bowel obstruction, and other structural intestinal disorders, gut dysmotility, renal or failure, congestive heart failure, or liver failure (Grade IA). Dosing of aqueous NaP should be 45 ml in divided doses, 10 to 12 hours apart with one of the doses taken on the morning of the procedure (Grade IIB). Aqueous NaP is the preferable form of NaP at this time (Grade IIB). Apart from anecdotal reports, the addition of adjuncts to the standard NaP regimen has not demonstrated any dramatic effect on colonic cleansing preparation. Carbohydrate-electrolyte solutions such as E-Lyte® may improve safety and tolerability. #### Tablet NaP The tablet form of NaP was designed to improve the taste and limit the volume of liquid required. The results of two large, identically designed, Phase III, multicenter, randomized, investigator-blinded trials that compared tablet NaP with 4-liter PEG regimens²¹ were the basis for FDA approval in 2000. Each 2g tablet contains 1500 mg of active ingredients (monobasic and dibasic NaP) and 460 mg of microcrystalline cellulose as a tablet binder. The amount of active ingredient in this regimen is comparable to the standard aqueous NaP regimen. Microcrystalline cellulose is a nonabsorbable inert polymer and is therefore insoluble in the gastrointestinal tract. 23 The remnants of this polymer can be visualized during colonoscopy and may interfere with the examination of the bowel mucosa. Therefore, reduced amounts of microcrystalline cellulose may help visualize the colonic mucosa. In 2001, a laboratory study demonstrated the beneficial effects of ginger ale when administered with Visicol® tablets. This study attempted to provide a scientific basis for the clinical observation that ginger ale facilitates the removal of microcrystalline cellulose from the colon after the administration of Visicol® before colonoscopy.⁷⁴ Product. #### 1. Visicol® *Dosing.* Dosage is 32 to 40 tablets: 20 tablets on the evening before the procedure and 12 to 20 tablets the day of the procedure (3–5 hours before). The 20 tablets are taken as 4 tablets every 15 minutes with 8 oz of clear liquid. 45 Bisacodyl is prescribed by some physicians as an adjunct. Evidence. The Phase III trials in which tablet NaP regimens were compared with 4-liter PEG regimens demonstrated equal colon cleansing with fewer side effects. 21,23 Tablet NaP has been compared with aqueous NaP in multiple studies. Balaban et al.33 found that liquid or aqueous NaP is better tolerated and more effective than tablet NaP. Aronchick et al. 34 found that tablet NaP is as safe and effective as Colyte® and aqueous NaP and greatly preferred by patients. Two problems were identified with the initial 40-tablet regimen. First, the inactive ingredient microcrystalline cellulose produces a residue that obscures the mucosal surface. Second, a large number of tablets (n = 40) needs to be ingested in a short period of time. These problems have been overcome by the reduction in the amount of microcrystalline cellulose per tablet²² by a reduction in the number of tablets needed to complete the preparation from 40 to between 28 and 32 tablets.²³ Studies comparing liquid NaP and a 2-liter PEG regimen with NaP tablets are pending publication; studies on adjunct therapies are currently lacking. Recommendations. The improved taste and palatability of tablet NaP compared with aqueous NaP has not translated into improved overall patient tolerance (Grade IA). The reduced amount of microcrystalline cellulose allows for better visualization of the colonic mucosa with less need for colonic irrigation (Grade IVB). Efficacy is maintained despite decreasing the number of tablets required to complete the preparation (Grade IIB), significantly improving patient tolerance. ## ADJUNCTS TO COLONIC CLEANSING BEFORE COLONOSCOPY ## Flavoring There have been many attempts to improve the flavor of both PEG-electrolyte solutions and NaP solutions. As a result, PEG-electrolyte solutions are available in multiple flavors such as cherry, citrusberry, lemon-lime, orange, and pineapple. In addition, the sulfate salts have been removed from HalfLytely® and NuLYTELY®, resulting in a less salty taste and avoidance of the "rotten egg" smell. Gatorade®, CrystalLite®, and carbohydrate-electrolyte solutions have been used to improve palatability in both PEG and NaP solutions. Ginger ale and water are used with NaP to improve the taste. However, improved flavor does not necessarily equate to improved tolerance.⁷⁵ Special care must be taken to avoid altering the osmolarity of the preparation or adding substrates to the preparation, which can metabolize into explosive gases^{45,73} or alter the amount of water and salts absorbed. # Nasogastric/Orogastric Tube Administration of Colonic Preparations Nasogastric
tubes have been used to instill colonic preparations, primarily PEG solutions, in both children and adults. In addition to the potential complications related to placement of the nasogastric tube, case reports have demonstrated the potential for severe life-threatening complications, such as aspiration.³⁸ ## Carbohydrate-Electrolyte Solutions Products. - 1. Gatorade® - 2. E-Lyte® - 3. Generic formulations of carbohydrate-electrolyte solutions also are available. Carbohydrate-electrolyte solutions have been used in combination with both PEG and NaP solutions to make the preparation more palatable and, in the latter, to avoid the severe electrolyte/fluid shifts. Combining PEG-3350 laxative powder (Miralax®) and Gatorade® has been shown to improve the taste and tolerability of the preparation. The E-Lyte® combined with NaP was demonstrated to improve overall tolerability and reduce the degree of volume contraction, hypokalemia, and the need for intravenous rehydration. Although beneficial, the addition of these carbohydrate-based solutions is associated with a theoretic risk of cautery-induced explosion if these carbohydrates are metabolized by colonic bacteria into explosive gases. #### **Enemas** Products. - 1. Tap Water - 2. Soap Suds - 3. Fleet® - 4. Fleet® Bisacodyl - 5. Fleet[®] Mineral Oil Before the development of PEG, enemas were an essential component of colonic preparation. However, conclusive evidence has demonstrated that enemas do not improve the quality of bowel cleansing, yet significantly increase patient discomfort. Enemas may still play a role in the patient who presents for colonoscopy with a poor preparation. ## Metaclopramide Products. - 1. Reglan® - 2. Generic formulations also are available. Metaclopramide is a dopamine antagonist gastroprokinetic that sensitizes tissues to the action of acetylcholine. This results in increased amplitude of gastric contraction, increased peristalsis of the duodenum and jejunum, and does not change colonic motility. Metaclopramide used as an adjunct with PEG has been shown to reduce nausea and bloating but not improve colonic cleansing.⁵⁴ However, a second study did not reveal any advantage with regard to colonic cleansing or patient tolerance.⁵⁵ ## Simethicone Products. - 1. Gas-X® - 2. Mylicon® - 3. Mylanta[®] - 4. Generic formulations also are available. Simethicone is an antiflatulent, antigas agent that has been used as an adjunct to colonoscopy preparations. The use of simethicone as an adjunct to PEG-electrolyte solution to eliminate foam formation after colonoscopy preparation and improve visualization during colonoscopy has been studied.⁷⁷ Simethicone reduced foaming, improved tolerability, and improved efficacy (*i.e.*, reduction in residual stool at time of colonoscopy). However, the mechanism of action of simethicone was unclear. A subsequent study also showed a reduction in bubble formation seen during colonoscopy and an improvement in overall tolerability.⁷⁸ ## Bisacodyl Bisacodyl is a poorly absorbed diphenylmethane that stimulates colonic peristalsis. 35 Bisacodyl used as an adjunct with high-volume balanced solution shortened the duration of whole gut irrigation, although no significant difference in colon cleansing was identified.⁷⁹ Bisacodyl, when used as an adjunct with PEG, has demonstrated no significant difference in the quality of the preparation or amount of residual colonic fluid during colonoscopy. 56,80 Bisacodyl and magnesium citrate are used as adjuncts to PEG solutions and have allowed for less volume of PEG necessary for colonic cleansing. 18,26 Afridi et al.20 studied bisacodyl as an adjunct with NaP given in split doses the evening before the procedure. This combined regimen was found to be equally effective and tolerable as standard 4-liter PEG. Anecdotally, bisacodyl has been used as an adjunct for aqueous and tablet NaP, although further studies are necessary. #### Saline Laxatives Products. - 1. Magnesium citrate - 2. Picolax[®] (sodium picosulfate/magnesium citrate) Magnesium citrate is a hyperosmotic saline laxa- Magnesium citrate is a hyperosmotic saline laxative that increases intraluminal volume resulting in increased intestinal motility. Magnesium also stimulates the release of cholecystokinin, which causes intraluminal accumulation of fluid and electrolytes and promotes small bowel and, possibly, colonic transit. Because magnesium is eliminated from the body solely by the kidney, magnesium citrate should be used with extreme caution in patients with renal insufficiency or renal failure. Two studies by Sharma *et al.*^{18,62} used magnesium citrate as an adjunct to PEG. The addition of magnesium citrate allowed for less PEG solution (2 liters) to be used to achieve the same result. Thus, the 2-liter volume PEG regimen was significantly better tolerated by patients. Saline laxatives that use sodium picosulfate and magnesium citrate as the active ingredients are available primarily in the United Kingdom. Bowel preparations with this regimen have been compared with both PEG⁸¹ and NaP. ⁶⁵ Picolax® was found to be equally effective as PEG in terms of quality of preparation but more tolerable (less nauseating and easier to finish). Conflicting data concerning NaP compared with Picolax® have been published. ^{31,65} #### Senna Products. - 1. X-Prep® - 2. Senakot Senna laxatives contain anthraquinone derivatives (glycosides and sennosides) that are activated by colonic bacteria. The activated derivatives then have a direct effect on intestinal mucosa, increasing the rate of colonic motility, enhancing colonic transit, and inhibiting water and electrolyte secretion. Senna has been used as an adjunct to PEG regimens in a manner similar to that of bisacodyl. No differences were found between senna and bisacodyl when used as an adjunct in combination with PEG. The adjunctive use of senna with PEG solutions has been demonstrated to improve the quality of bowel preparation. and to reduce the amount of PEG required for effective bowel preparation. ## **EFFICACY** To assess the efficacy of bowel preparation, one must assess the relatively subjective appearance of the prepared colonic mucosa to a relatively objective parameter. Toward that end, several colonic cleansing systems have been proposed 11,34,84; however, no single system seems ideal in all situations. #### **SAFETY** The safety of the various bowel preparation protocols currently available for use before colonoscopy is related to the safety profile of the base agent, PEG or NaP. Generally, all of the preparations detailed in this document have been demonstrated safe for use in otherwise healthy individuals without significant comorbid conditions. ^{21,85,86} Caution should be taken in selecting a bowel preparation for patients with significant hepatic, renal, or cardiac dysfunction, and for those at the extremes of age. The administration of isotonic PEG solution does not result in significant physiologic changes as measured by patient weight, vital signs, serum electrolytes, blood chemistries, and complete blood counts. ^{7,56,60} Isotonic PEG has been safely used in patients with serum electrolyte imbalances, advanced hepatic dysfunction, acute and chronic renal failure, and congestive heart failure. PEG does not alter the histologic features of colonic mucosa and may be used in patients suspected of having inflammatory bowel disease without obscuring the diagnostic capabilities of colonoscopy or biopsy analysis. ⁸⁷ Rare adverse events in patients receiving PEG have been reported and include nausea with and without vomiting, abdominal pain, pulmonary aspiration, Mallory-Weiss tear, PEG-induced pancreatitis and colitis, lavage-induced pill malabsorption, cardiac dysrhythmia, and the syndrome of inappropriate antidiuretic hormone.^{2,88–90} An increase in plasma volume has been shown to occur in some individuals with concomitant disease states that predispose them to fluid retention. 91,92 Adverse effects may occur less frequently in association with preparation regimens that use a reduced volume of PEG. 93 Some drug interaction databases raise concerns when PEG solutions, especially HalfLytely®, are prescribed for patients taking ACE inhibitors and/or potassiumsparing diuretics because of the small amount of potassium present in this preparation solution. Although this problem raises a theoretic concern for hyperkalemia in these patients, no clinical reports of adverse outcomes were available as of this writing. The use of NaP is associated with physiologically significant, although rarely clinically meaningful, changes in volume status and electrolyte abnormalities. Sodium phosphate is contraindicated in patients with serum electrolyte imbalances, advanced hepatic dysfunction, acute and chronic renal failure, recent myocardial infarction, unstable angina, congestive heart failure, ileus, malabsorption, and ascites. Paper NaP preparations have been shown to alter both the macroscopic and microscopic features of intestinal mucosa, and in- duce aphthoid erosions similar to those seen in inflammatory bowel disease (IBD), which may obscure the diagnosis of IBD. ^{68,99,100} For this reason, many clinicians avoid using NaP preparations in patients undergoing diagnostic colonoscopy for suspected IBD or microscopic colitis. NaP is available as a bowel preparation for colonoscopy in both liquid and solid tablet form. The following adverse events are characteristic of both formulations. Serum electrolyte abnormalities and extracellular fluid volume is altered, initially by increasing fluid retention, and then causing significant losses of both fluid and electrolytes in the stool effluent.^{39,101} The significant volume contraction and resultant dehydration seen in some patients using NaP preparations may be lessened by encouraging patients to drink fluids liberally during the days leading up to their procedure, especially during their preparation. 94 Although usually
asymptomatic, hyperphosphatemia is seen in as many as 40 percent of healthy patients completing NaP preparations, and may be significant in patients with renal failure. 58,102 As many as 20 percent of patients using NaP preparations develop hypokalemia; in addition, NaP has been shown to cause elevated blood urea nitrogen levels, decreased exercise capacity, increased plasma osmolality, hypocalcemia, 101,103 and significant hyponatremia and seizures. 104 These significant blood chemistry abnormalities are more profound in children; therefore, NaP should not be used in children with acute and chronic renal failure, congestive heart failure, ileus, and ascites. Rare adverse events, such as nephrocalcinosis with acute renal failure, also have been reported after NaP preparation for colonoscopy particularly in those patients with hypertension receiving ACE inhibitors or ARBs. 64,105 #### SPECIAL CONSIDERATIONS #### **Inadequate Bowel Preparation** Inadequate bowel preparation for colonoscopy can result in missed lesions, canceled procedures, increased procedural time, and a potential increase in complication rates. One study examined the possible causes for poor preparations. Surprisingly, less than 20 percent of patients with an inadequate colonic preparation reported a failure to adequately follow preparation instructions. Independent predictors of an inadequate colon preparation included a later colonoscopy starting time, failure to follow preparation instructions, inpatient status, procedural indication of constipation, use of tricyclic antidepressants, male gender, and a history of cirrhosis, stroke, or dementia. Anecdotally, a poor preparation after a PEG preparation is usually liquid and more easily managed than a preparation after NaP, which tends to be thick and tenaciously adhered to the mucosa. There is no published information on the management of the patient who has received a colonoscopy preparation that has been deemed inadequate. Regardless of the preparation selected, the patient and physician must be aware of potential financial obligations of a repeat colonoscopy and preparation. Specifically, the patient may be required to pay an additional copay for each examination and the financial intermediary may deem one or both examinations unnecessary. In these instances, the patient may be responsible for payment in full for both examinations. The following are recommendations (all are Grade VD) on management of this clinical predicament. Identify whether or not the patient has consumed the preparation as prescribed. If not, it would be reasonable to repeat the same preparation, although not within 24 hours using NaP because of the risk of toxicity. If the patient has properly consumed the preparation, reasonable options include repeating the preparation with a longer interval of dietary restriction to clear liquids, switching to an alternate but equally effective preparation (if the patient received PEG, change to NaP or vice versa), adding another cathartic, such as magnesium citrate, bisacodyl, or senna, to the previous regimen, or double administration of the preparation during a two-day period (with the exception of NaP). Combining preparations, for example PEG solution and NaP solution, also has been described with some success. 18 ## Selection of Bowel Preparation Based on Comorbidities Elderly Patients. Elderly patients tend to have poorer preparations, although one study found no difference in the adequacy of the colonic preparation between PEG and NaP solutions. They are at an increased risk for phosphate intoxication because of decreased kidney function, concomitant medication use, and systemic and gastrointestinal diseases. Administration of NaP causes a significant rise in serum phosphate, ¹⁰⁸ even in patients with normal creatinine clearance. 109 Hypokalemia is more prevalent in frail patients. 110 However, NaP preparations may be safe in selected healthy elderly patients. 71,72 Possible Underlying Inflammatory Bowel Disease. NaP preparations may cause mucosal abnormalities that mimic Crohn's disease. 68,100,111 However, the frequency of this problem is rare and may not mitigate against using NaP. This caveat is most important in the initial colonoscopic evaluation of patients with symptoms suspect for colitis. *Diabetes Mellitus.* One study showed that patients with diabetes have significantly poorer preparations with PEG solutions than patients without diabetes, although there is no evidence that NaP preparations are superior in this group.¹¹² Pregnancy. The need for colonoscopy is uncommon during pregnancy, therefore, the safety and efficacy of colonoscopy in these individuals is not well studied. However, invasive procedures are justified when it is clear that by not doing so could expose the fetus and/or mother to harm. The safety of PEG electrolyte isotonic cathartic solutions has not been studied in pregnancy. PEG solutions are FDA Category C for use in pregnancy, as defined in the FDA Current Category for Drug Use in Pregnancy, wherein no adequate and wellcontrolled studies have been undertaken in pregnant females and a limited number of animal studies have shown an adverse effect. The common use of PEG solutions, such as Miralax®, to manage constipation asso-ciated with pregnancy supports its safety as a bowel preparation. NaP preparations, which are also FDA Category C, may cause fluid and electrolyte abnormalities and should be used with caution.³⁵ *Recommendations.* If the potential benefit of colonoscopy outweighs the small but potential risks, patients may be cleansed with PEG solutions or, in select patients, a NaP preparation may be used (Grade VD). Pediatric Population. Although there are no "national standards" per se for pediatric bowel preparations for colonoscopy, review of the literature documents the three most commonly used preparations. The least commonly used preparation is the administration of two pediatric Fleet® enemas and X-Prep® (for age). A more widely used preparation includes Miralax® at 1.25 mg/kg per day for four days, the last day of which the child is maintained on clear liquids. This regimen is mild, well tolerated, and relatively simple to administer. The simplest preparation, both for the parents and the child, is the administration of a sugar-free, clear-liquid diet the day before and then nil by mouth for eight hours before the colonoscopy. This regimen is combined with Fleet[®] Phospho-soda[®] at a dosage of 1.5 tablespoons for children weighing less than 15 kg and 3 tablespoons for children weighing 15 kg or more, the afternoon and then again the evening before the colonoscopy. Each of these preparations is safe and will adequately prepare the child's colon for colonoscopy (Grade IA). 113,114 #### **COST** Table 3 shows the cost of bowel preparation agents listed as average wholesale price (AWP), which is provided by the "Red Book" July 2005. As **Table 3.**Cost of Bowel Preparation Agents | Product | Quantity | Average Wholesale Price ^a | |---|------------|--------------------------------------| | | Gaaritity | Avoiago Wholesale i fice | | Colyte® | 0.707 | 0.00.00 | | flavored | 3,785 ml | \$16.16 | | nonflavored | 3,785 ml | \$13.89 | | GlycoLax™ | 255 g | \$19.54 | | | 527 g | \$39.06 | | GoLYTELY [®] | | | | flavored | 4,000 ml | \$19.70 | | nonflavored | 4,000 ml | \$18.45 | | MiraLax TM | 255 g | \$21.73 | | Mildeax | 527 g | \$43.45 | | NuLYTELY® | 321 g | ψτυ.τυ | | flavored | 4 000 ml | \$25.65 | | | 4,000 ml | | | nonflavored | 4,000 ml | \$25.65 | | TriLyte ^{®b} | | | | flavored | 4,000 ml | \$25.63 | | Oral sodium phosphate (aqueous) | 45 ml | \$1.48 | | Fleet [®] Phospho-soda | 90 ml | \$2.65 | | Oral sodium phosphate (tablet) | 100s | \$160.22 (\$1.60/tablet, | | Visicol TM | | \$44–\$66/preparation) | | Bisacodyl (tablet) 5 mg (Amkas) | 100s | \$9.85 (\$0.10/tablet) | | Magnesium citrate (liquid) (AmerisourceBergen) | 300 ml | \$1.43 | | Senna (AmerisourceBergen) | 100s | \$8.99 (\$0.09/tablet) | | | | | | Senna/Docusate (tablet) Senna Plus® (American Health) | 100s | \$11.13 (\$0.11/tablet) | | Metoclopramide (tablet) 5 mg 100s (Pliva) | | \$32.00 (\$0.32/tablet) | | Fleet® Enema | 135 ml | \$0.80 | | Fleet® Bisacodyl | | | | ECT, po 5 mg | 25s | \$2.90 (each) | | SUP, RC, 10 mg | 4s | \$1.83 (each) | | Fleet® Bisacodyl Enema 10 mg/1.25 oz | 37.5 ml | \$1.12 ` | | Fleet® Mineral Oil | 480 ml | \$1.88 | | Fleet® Mineral Oil Enemas | 135 ml | \$1.45 | | Enemeez® Mini Enema (replacement for Therevac®-SB) | 5 ml (30s) | \$72.99° | | Gas-X® (80 mg) | 12s | \$1.88 | | Gas-A (60 mg) | | · | | M. P. R. L. L. D. | 36s | \$4.67 | | Mylicon® Infant Drops | 15 ml | \$6.22 | | 40 mg/0.6 ml | 30 ml | \$10.36 | | Simethicone 80 mg | 100s | \$6.30 (each) | | (Rugby) 125 mg | 60s | \$5.02 (each) | | Mylanta [®] | 150 ml | \$2.63 | | • | 360 ml | \$4.45 | | | 720 ml | \$8.00 | | X-Prep [®] Syrup 8 mg/5 ml | 75 ml | \$13.59 | | X-Prep® Bowel Evacuant Kit-1, with Senokot-S | 1 kit | \$19.32 (each) | | HalfLytely® and Bisacodyl Tablet Bowel Prep Kit | 1 kit | | | TianLytery and Disacodyl Tablet Dowel Frep Kil | | \$48.75 (each) | | E-Lyte [®] | 20 oz | \$20.00° | ^aProduct pricing provided by manufacturers as listed in July 2005 (2003 Red Book[®], American Academy of Pediatrics, Elk Grove Village, IL). ^bOnly TriLyte[®] with Flavor Packs was listed in the Red Book[®]. ^cPrice listed on the internet. can be seen, the least expensive solution is oral NaP and the most expensive is the tablet form of NaP. The various PEG preparations are intermediate in cost. None of the bowel preparation agents has an associated CPT code that would allow for separate payment reimbursed by the patients' insurance company or Medicare in an outpatient setting. In an inpatient setting, the reimbursement for these agents would be included in the DRG payment. Of note, patients' compliance and adequacy of bowel
preparation agents can affect the direct cost for colonoscopic examination. A cost analysis has shown that inadequate bowel preparation could prolong the procedure time and increase the chance for an aborted examination and repeat colonoscopy earlier than suggested or required by current practice standards. 115 In one study, inadequate bowel preparation led to a 12 percent increase in costs at a university hospital setting and a 22 percent increase at a public hospital setting. 116 A meta-analysis performed on eight colonoscopist-blinded trials showed that the direct costs of colonoscopic examination (excluding the cost of bowel preparation agents) were \$465 for NaP and \$503 for PEG, assuming that the rates of reexamination secondary to incomplete bowel preparation for NaP and PEG were 3 and 8 percent, respectively. The results suggest that NaP is less costly than PEG with a more easily completed preparation.¹⁵ #### **SUMMARY** Colonoscopy is the most commonly used technique for inspection of the colonic mucosa. The safety and effectiveness of colonoscopy in identifying important colonic pathology is directly impacted by the quality of the bowel preparation performed in anticipation of the procedure. Physicians favor preparations associated with the best patient compliance to achieve the best results. Patients favor preparations that are low in volume, palatable, have easy to complete regimens, and are reimbursed by health insurance or are inexpensive. Both patients and physicians favor preparations that are safe to administer in light of existing comorbid conditions and those that will not interact with previously prescribed medications. Aqueous NaP solutions, NaP tablets, and PEG solutions, especially low-volume solutions, are all accepted and well tolerated by the majority of patients undergoing bowel preparation for colonoscopy. Physicians are advised to select a preparation for each patient based on the safety profile of the agent, NaP or PEG, in light of the overall health of the patient, their comorbid conditions, and currently prescribed medications. In certain circumstances, such as bowel preparation in children and some elderly patients, patients with renal insufficiency, and those with hypertension who are receiving ACE inhibitors or ARBs, it may be advisable to adhere to PEG-based solutions because of the risks of occult physiologic disturbances that may potentially contraindicate the use of NaP-based regimens. A variety of other preparations, none of which seem as popular because of inferior efficacy and/or patient acceptance, remain available for use in other circumstances in which bowel preparation is necessary. Many adjuncts to bowel preparation have been proposed but remain largely inefficacious and therefore cannot be recommended for routine use. ADDENDUM Products and Manufacturers | Product | Manufacturer | City, State | |---|---|---------------------------------| | Colyte [®]
GoLYTELY [®] | SchwarzPharm
Braintree
Laboratories | Mequon, WI
Braintree, MA | | NuLYTELY [®] | Braintree
Laboratories | Braintree, MA | | TriLyte [®]
HalfLytely [®] | SchwarzPharm Braintree Laboratories | Mequon, WI
Braintree, MA | | Miralax® | Braintree
Laboratories | Braintree, MA | | Fleet®
Phospho-
soda | C.B. Fleet
Company | Lynchburg, VA | | Picolax® | Ferring
Pharmaceuticals | Berkshire, UK | | E-Lyte [®] | C.B. Fleet
Company | Lynchburg, VA | | Visicol® | Salix Pharmaceuticals | Morrisville, NC | | Gatorade® | Gatorade
International | Chicago, IL | | CrystalLite®
Fleet® | Kraft Foods
C.B. Fleet | Northfield, IL
Lynchburg, VA | | Bisacodyl
Fleet [®]
Mineral
Oil | Company
C.B. Fleet
Company | Lynchburg, VA | | Reglan® | Robins
Pharmaceutical | Eatontown, NJ | | Gas-X [®] | Novartis Consumer Health, Inc. | Broomfield, CO | | Mylicon® | J&J/Merck
Pharmaceuticals | Fort Washington, PA | | Mylanta® | J&J/Merck Pharmaceuticals | Fort Washington, | | X-Prep® | Purdue Frederick | Norwalk, CT | #### **ACKNOWLEDGEMENT** The authors and the governing bodies of the three respective societies thank Ms. Elektra McDermott for her expert assistance in all stages of data collection and manuscript preparation, and Dr. Thomas Lobe for his expert contributions regarding bowel preparation in pediatric patients. #### **DISCLOSURES** Steven D. Wexner, M.D. Member, Scientific Advisory Board, C.B. Fleet David E. Beck, M.D. Consultant, Braintree, Salix Todd H. Baron, M.D. None Robert D. Fanelli, M.D. None Neil Hyman, M.D. None Bo Shen, M.D. Consultant to Salix, Visicol Kevin E. Wasco, M.D. None #### REFERENCES - DiPalma JA, Brady CE. Colon cleansing for diagnostic and surgical procedures: polyethylene glycol-electrolyte lavage solution. Am J Gastroenterol 1989;84:1008–16. - 2. Tooson JD, Gates LK Jr. Bowel preparation before colonoscopy. Choosing the best lavage regimen. Postrgrad Med 1996;100:203–14. - 3. Beck DE, Harford FJ, DiPalma JA. Comparison of cleansing methods in preparation for colonic surgery. Dis Colon Rectum 1985;28:491–5. - Zmora O, Wexner SD. Bowel preparation for colonoscopy. Clin Colon Rectal Surg 2001;14:309–15. - 5. Davis GR, Santa Ana CA, Morawski SG, Fordtran JS. Development of a lavage solution with minimal water and electrolyte absorption or secretion. Gastroenterology 1980;78:991–5. - DiPalma JA, Brady CE III, Stewart DL, et al. Comparison of colon cleansing in preparation for colonoscopy. Gastroenterology 1984;86:856–60. - Ernstoff JJ, Howard DA, Marshall JB, Jumshyd A, McCullough AJ. A randomized blinded critical trial of a rapid colonic lavage solution compared with standard preparation for colonoscopy and barium enema. Gastroenterology 1983;84:1512-6. - 8. Thomas G, Brozisky S, Isenberg JI. Patient acceptance and effectiveness of a balanced lavage solution (Golytely) versus the standard preparation for colonoscopy. Gastroenterology 1982;82:435–7. - DiPalma JA, Marshall JB. Comparison of a new sulfate-free polyethylene glycol lavage solution versus a standard solution for colonoscopy cleansing. Gastrointest Endosc 1990;36:285–9. - 10. Froehlich F, Fried M, Schnegg JF, Gonvers JJ. Palat- - ability of a new solution compared with standard polyethylene glycol solution for gastrointestinal lavage. Gastrointest Endosc 1991;37:325–8. - 11. Froehlich F, Fried M, Schnegg JF, Gonvers JJ. Low sodium solution for colonic cleansing: a double blind, controlled, randomized prospective study. Gastrointest Endosc 1992;38:579–81. - Raymond JM, Beyssac R, Capdenat E, et al. Tolerance, effectiveness, and acceptability of sulfate-free electrolyte lavage solution for colon cleansing before colonoscopy. Endoscopy 1996;28:555–8. - 13. Cohen SM, Wexner SD, Binderow SR, *et al.* Prospective, randomized, endoscopic-blinded trial comparing precolonoscopy bowel cleansing methods. Dis Colon Rectum 1994;37:689–96. - 14. Frommer D. Cleansing ability and tolerance of three bowel preparations for colonoscopy. Dis Colon Rectum 1997;40:100–4. - 15. Hsu CW, Imperiale TF. Meta-analysis and cost comparison of polyethylene glycol lavage versus sodium phosphate for colonoscopy preparation. Gastrointest Endosc 1998;48:276–82. - Hookey LC, Depew WT, Vanner S. The safety profile of oral sodium phosphate for colonic cleansing before colonoscopy in adults. Gastrointest Endosc 2002; 56:895–902. - Chang KJ, Erickson RA, Schandler S, Coye T, Moody C. Per-rectal pulsed irrigation versus per-oral colonic lavage for colonoscopy preparation: a randomized, controlled trial. Gastrointest Endosc 1991;37:444–8. - 18. Sharma VK, Chockalingham SK, Ugheoke EA, *et al.* Prospective, randomized, controlled comparison of the use of polyethylene glycol electrolyte lavage solution in four-liter versus two-liter volumes and pretreatment with either magnesium citrate or bisacodyl for colonoscopy preparation. Gastrointest Endosc 1998;47:167–71. - 19. Poon CM, Lee DW, Mak SK, *et al.* Two liters of polyethylene glycol-electrolyte solution versus sodium phosphate as bowel cleansing regimen for colonoscopy: a prospective randomized controlled trial. Endoscopy 2002;34:560–3. - Afridi SA, Barthel JS, King PD, Pineda JJ, Marshall JB. Prospective, randomized trial comparing a new sodium phosphate-bisacodyl regimen with conventional PEG-ES lavage for outpatient colonoscopy preparation. Gastrointest Endosc 1995;41:485–9. - 21. Kastenberg D, Chasen R, Choudhary C, et al. Efficacy and safety of sodium phosphate tablets compared with PEG solution in colon cleansing: two identically designed, randomized, controlled, parallel group multicenter Phase III trials. Gastrointest Endosc 2001;54:705–13. - 22. Rex DK, Chasen R, Pochapin MB. Safety and efficacy of two reduced doing regimens of sodium phosphate - tablets for preparation before colonoscopy. Aliment Pharmacol Ther 2002;16:937–44. - 23. Khashab M, Rex DK. Efficacy and tolerability of a new formulation of sodium phosphate tablets and a reduced sodium phosphate dose, in colon cleansing: a single-center open-label pilot trial. Aliment Pharmacol Ther 2005;21:465–8. - Church JM. Effectiveness of polyethylene glycol antegrade gut lavage bowel preparation for colonoscopy—timing is the key. Dis Colon Rectum 1998; 41:1223–5. - El Sayed AM, Kanafani ZA, Mourad FH, et al. A randomized single-blind trial of whole versus splitdose polyethylene glycol-electrolyte solution for colonoscopy preparation. Gastrointest Endosc 2003; 58:36–40. - Adams WJ, Meagher AP, Lubowski DZ, King DW. Bisacodyl reduces the volume of PEG solution required for bowel preparation. Dis Colon Rectum 1994;27:229–33. - 27. Henderson JM, Barnett JL, Turgeon DK, *et al.* Single-day, divided-dose oral sodium phosphate laxative versus intestinal lavages as preparation for colonoscopy: efficacy and patient tolerance. Gastrointest Endosc 1995;42:238–43. - 28. Young CJ, Simpson RR, King DW, Lubowski DZ. Oral sodium
phosphate solution is a superior colonoscopy preparation to polyethylene glycol with bisacodyl. Dis Colon Rectum 2000;43:1568–71. - Barclay RL. Safety, efficacy, and patient tolerance of a three-dose regimen of orally administered aqueous sodium phosphate for colonic cleansing before colonoscopy. Gastrointest Endosc 2004;60:527– 33. - 30. Law WL, Choi HK, Chu KW, Ho JW, Wong L. Bowel preparation for colonoscopy: a randomized controlled trial comparing polyethylene glycol solution, one dose and two doses of oral sodium phosphate solution. Asian J Surg 2004;271:20–4. - 31. Schmidt LM, Williams P, King D, Perera D. Picoprep-3 is a superior colonoscopy preparation to Fleet: a randomized, controlled trial comparing the two bowel preparations. Dis Colon Rectum 2004;47:238–42. - 32. Golub RW, Kerner BA, Wise WE Jr. Colonoscopic preparations-which one? A blinded, prospective, randomized trial. Dis Colon Rectum 1995;58:594–7. - 33. Balaban DH, Leavell BS Jr, Oblinger MJ, Thompson WO, Bolton ND, Pambianco DJ. Low-volume preparation for colonoscopy: randomized, endoscopist-blinded trial of liquid sodium phosphate versus tablet sodium phosphate. Am J Gastroenterol 2003;98:827–32. - 34. Aronchick CA, Lipshutz WH, Wright SH, Dufrayne F, Bergman G. A novel tableted purgative for colonoscopic preparation: efficacy and safety comparisons - with Colyte and Fleet Phospho-Soda. Gastrointest Endosc 2000;52:346-52. - 35. Ell C, Fischbach W, Keller R, *et al.* A randomized, blinded, prospective trial to compare the safety and efficacy of three bowel-cleansing solutions for colonoscopy (HSG-01). Endoscopy 2003;35:300–4. - 36. Martinek J, Hess J, Delarive J, *et al.* Cisapride does not improve the precolonoscopy bowel preparation with either sodium phosphate or polyethylene glycol electrolyte lavage. Gastrointest Endosc 2001;54:180–5. - 37. Vanner SJ, MacDonald PH, Paterson WG, Prentice RS, Da Costa LR, Beck IT. A randomized prospective trial comparing oral sodium phosphate with standard polyethylene glycol-based lavages solution (Golytely) in the preparation of patients for colonoscopy. Am J Gastroenterol 1990;85:422–7. - 38. Marschall H-U, Bartels F. Life-threatening complications of nasogastric administration of polyethylene glycol-electrolyte solutions (Golytely) for bowel cleansing. Gastrointest Endosc 1998;47:408–10. - 39. Kolts BE, Lyles WE, Achem SR, Burton L, Geller AJ, MacMath T. A comparison of the effectiveness and patient tolerance of oral sodium phosphate, castor oil, and standard electrolyte lavage for colonoscopy or sigmoidoscopy preparation. Am J Gastroenterol 1993;88:1218–23. - Nelson DB, Barkun AN, Block KP, et al. ASGE Technology Committee. Technology status evaluation report: colonoscopy preparations. Gastrointest Endosc 2001;54:829–32. - 41. Cook DJ, Guyatt GH, Laupacis A, Sackett DL. Rules of evidence and clinical recommendations on the use of antithrombotic agents. Chest 1992;102(Suppl 4), 305S–11S. - 42. Berry MA, DiPalma JA. Orthograde gut lavage for colonoscopy. Aliment Pharmacol Ther 1994;8: 391–395. - 43. Reilly T, Walker G. Reasons for poor colonic preparation for inpatients. Gastroenterol Nurs 2004; 27:115–7. - 44. Bigard MA, Gaucher P, Lassalle C. Fatal colonic explosion during colonoscopic polypectomy. Gastroenterology 1979;77:1307–10. - 45. Panton ON, Atkinson KG, Crichton EP, Schulzer M, Beaufoy A, Germann E. Mechanical preparation of the large bowel for elective surgery. Comparison of whole gut lavage with conventional enema and purgative technique. Am J Surg 1985;149:615–9. - 46. Chan CH, Diner WC, Fontenot E, Davidson BD. Randomized single-blind clinical trial of a rapid colonic lavage solution versus standard preparation for barium enema and colonoscopy. Gastrointest Radiol 1985;10:378–82. - 47. Burke DA, Mannin AP, Murphy L, Axon AT. Oral bowel lavage preparation for colonoscopy. Postgrad Med J 1988;64:772–4. - 48. Adler M, Quenon M, Even-Adin D, *et al.* Whole gut lavage for colonoscopy: a comparison between two solutions. Gastrointest Endosc 1984;30:65–7. - Beck DE, Fazio VW, Jagleman DG. Comparison of oral lavage methods for preoperative colon cleansing. Dis Colon Rectum 1986;29:699–703. - Marshall JB, Pineda JJ, Barthel JS, King PD. Prospective, randomized trial comparing sodium phosphate solution with polyethylene glycol electrolyte lavage for colonoscopy preparation. Gastrointest Endosc 1993;39:631–4. - 51. Lever EL, Walter MH, Condon SC, *et al.* Addition of enemas to oral lavage preparation for colonoscopy is not necessary. Gastrointest Endosc 1992;38: 369–372. - 52. Rosch T, Classen M. Fractional cleansing of the large bowel with Golytely for colonoscopic preparations: a controlled trial. Endoscopy 1987;19:198–200. - 53. Aoun E, Abdul-Baki H, Azar C, et al. A randomized single-blind trial of split-dose PEG-electrolyte solution without dietary restriction compared with whole dose PEG-electrolyte solution with dietary restriction for colonoscopy preparation. Gastrointest Endosc 2005; 62:213–8. - 54. Rhodes JB, Engstrom J, Stone KE. Metoclopramide reduces the distress associated with colon cleansing by an oral electrolyte overload. Gastrointest Endosc 1978;24:162–3. - 55. Brady CE III, DiPalma JA, Pierson WP. Golytely lavage: is metoclopramide necessary? Am J Gastroenterol 1985;80:180–4. - 56. Brady CE III, DiPalma JA, Beck DE. Effect of bisacodyl on gut lavage cleansing for colonoscopy. Am Clin Res 1987;19:34–8. - 57. Sondheimer JM, Sokol RJ, Taylor SF, Silverman A, Zelasney B. Safety, efficacy, and tolerance of intestinal lavage in pediatric patients undergoing diagnostic colonoscopy. J Pediatrics 1991;119:148–52. - Gremse DA, Sacks AI, Raines S. Comparison of oral sodium phosphate to polyethylene-glycol-based solution for bowel preparation in children. J Pediatr Gastroenterol Nutr 1996;23:586–90. - 59. Tolia V, Fleming S, Dubois R. Use of Golytely in children and adolescents. J Pediatr Gastroenterol Nutr 1984;3:468–70. - 60. Fordtran JS, Santa Ana CA, Cleveland MvB. A low-sodium solution for gastrointestinal lavage. Gastroenterolgy 1990;98:11–6. - Schiller LR, Emmett M, Santa Ana CA, Fordtrans JS. Osmotic effects of polyethylene glycol. Gastroenterology 1988;94:933–41. - 62. Sharma VK, Steinberg EN, Vasudeva R, Howden CW. Randomized, controlled study of pretreatment with magnesium citrate on the quality of colonoscopy preparation with polyethylene glycol electrolyte lavage solution. Gastrointest Endosc 1997;46:541–3. - 63. Schiller LR. Clinical pharmacology and use of laxatives and lavage solutions. J Clin Gastroenterol 1988;28:11–8. - 64. Markowitz GS, Stokes MB, Radhakrishnan J, D'Agati VD. Acute phosphate nephropathy following oral sodium phosphate bowel purgative: an underrecognized cause of chronic renal failure. Am Soc Nephrol 2005;16:3389–96. - 65. Linden TB, Waye JD. Sodium phosphate preparation for colonoscopy: onset and duration of bowel activity. Gastrointest Endosc 1999;50:811–3. - 66. Yoshioka K, Connolly AB, Ogunbiyi OA, Hasegawa H, Morton DG, Keighley MR. Randomized trial of oral sodium phosphate compared with oral sodium picosulfate (Picolax) for elective colorectal surgery and colonoscopy. Dig Surg 2000;17:66–70. - 67. Curran MP, Plosker GL. Oral sodium phosphate solution: a review of its use as a colonic cleanser. Drugs 2004;64:1697–714. - 68. Rejchrt S, Bures J, Siroky M, Kopacova M, Slezak L, Langr F. A prospective, observational study of colonic mucosal abnormalities associated with orally administered sodium phosphate for colon cleansing before colonoscopy. Gastrointest Endosc 2004;59: 651–654. - 69. da Silva MM, Briars GL, Patrick MK, Cleghorn GJ, Shepherd RW. Colonoscopy preparation in children: safety efficacy, and tolerance of high versus low volume cleansing methods. J Pediatr Gastroenterol Nutr 1997;24:33–7. - 70. Thomson A, Naidoo P, Crotty B. Bowel preparation for colonoscopy: a randomized prospective trial comparing sodium phosphate to polyethylene glycol in predominantly elderly population. J Gastroenterol Hepatol 1996;11:103–7. - 71. Seinela L, Pehkonen E, Laasanen T, Ahvenainen J. Bowel preparation for colonoscopy in very old patients: a randomized prospective trial comparing oral sodium phosphate and polyethylene glycol electrolyte lavage solution. Scand J Gastroenterol 2003;38:216–20. - 72. Barclay RL, Depew WT, Vanner SJ. Carbohydrate-electrolyte rehydration protects against intravascular volume contraction during colonic cleansing with orally administered sodium phosphate. Gastrointest Endosc 2002;56:633–8. - 73. Tjandra JJ, Tagkalidis P. Carbohydrate-electrolyte (E-Lyte[®]) solution enhances bowel preparation with oral Fleet[®] Phospho-soda[®]. Dis Colon Rectum 2004; 47:1181–6. - 74. InKine confirms effect of ginger ale on Visicol tablets. Business Wire, November 5, 2001; Available at: http://static.elibrary.com/b/businesswire/november052001/. - 75. Matter SE, Rice PS, Campbell DR. Colonic lavage solutions: plain versus flavored. Am J Gastroenterol 1993;88:49–52. - 76. Pashankar DS, Uc A, Bishop WP. Polyethylene glycol 3350 without electrolytes: a new safe, effective, and palatable bowel preparation for colonoscopy in children. J Pediatr 2004;144:358–62. - 77. Shaver WA, Storms P, Peterson WL. Improvement of colonic lavage with supplemental simethicone. Dig Dis Sci 1988;33:185–8. - 78. Lazzaroni M, Petrillo M, Desideri S, Bianchi Porro G. Efficacy and tolerability of polyethylene glycol-electrolyte lavage solution with and without simethicone in the preparation of patients with inflammatory bowel disease for colonoscopy. Aliment Pharmacol Ther 1993;7:655–9. - 79. Rings EH, Mulder CJ, Tytgat GN. The effect of bisacodyl on whole-gut irrigation in preparation for colonoscopy. Endoscopy 1989;21:172–3. - Ziegenhagen DJ, Zehnter E, Tacke W, Gheorghiu T, Kruis W. Senna versus bisacodyl in addition to GoLytely lavage for colonoscopy preparation: a prospective randomized trial. Z Gastroenterol 1992; 30:17–9. - 81. Hamilton D, Mulcahy D, Walsh D, Farrelly
C, Tormey WP, Watson G. Sodium picosulphate compared with polyethylene glycol solution for large bowel lavage: a prospective randomized trial. Br J Clin Pract 1996; 50:73–5. - 82. Ziegenhagen DJ, Zehnter E, Tacke W, Kruis W. Addition of Senna improves colonoscopy preparation with lavage: a prospective randomized trial. Gastrointest Endosc 1991;37:547–9. - 83. Iida Y, Miura S, Asada Y, *et al.* Bowel preparation for the total colonoscopy by 2000 ml of balanced lavage solution (GoLytely) and sennoside. Gastroenterol Jpn 1992;27:728–33. - 84. Huppertz-Hauss G, Bretthauer M, Sauar J, *et al.* Polyethylene glycol vs sodium phosphate in bowel cleansing for colonoscopy: a randomized trial. Endoscopy 2005;37:537–41. - Eschinger EJ, Littman JJ, Meyer K, Katz LC, Milman PJ, Kastenberg DM. Safety of sodium phosphate tablets in patients receiving propofol-based sedation for colonoscopy. J Clin Gastroenterol 2004;38:425–8. - 86. Reddy DN, Rao GV, Sriram PV. Efficacy and safety of oral sodium phosphate versus polyethylene glycol solution for bowel preparation for colonoscopy. Indian J Gastroenterol 2002;21:219–21. - 87. Pockros PJ, Foroozan P. Golytely lavage versus a standard colonoscopy preparation: effect on normal - colonic mucosal histology. Gastroenterology 1985; 88:545–8. - 88. Gabel A, Muller S. Aspiration: a possible severe complication in colonoscopy preparation by orthograde intestine lavage. Digestion 1999;60:284–5. - 89. Franga DL, Harris JA. Polyethylene glycol-induced pancreatitis. Gastrointest Endosc 2000;52:789–91. - Schroppel B, Segerer S, Keuneke C, Cohen CD, Schlondorff D. Hyponatremic encephalopathy after preparation for colonoscopy. Gastrointest Endosc 2001;53:527–9. - Granberry MC, White LM, Gardner SF. Exacerbation of congestive heart failure after administration of polyethylene glycolelectrolyte lavage solution. Ann Pharmacother 1995;29:1232–5. - Turnage RH, Guice KS, Gannon P, Gross M. The effect of polyethylene glycol lavage on plasma volume. J Surg Res 1994;57:284–8. - DiPalma JA, Wolff BG, Meagher A, Cleveland M. Comparison of reduced volume versus four liters sulfate-free electrolyte lavage solutions for colonoscopy colon cleansing. Am J Gastroenterol 2003; 98:2187–91. - 94. Huynh T, Vanner S, Paterson W. Safety profile of 5-h oral sodium phosphate regimen for colonoscopy cleansing: lack of clinically significant hypocalcemia or hypovolemia. Am J Gastroenterol 1995;90:104–7. - 95. Ehrenpreis ED, Wieland JM, Cabral J, Estevez V, Zaitman D, Secrest K. Symptomatic hypocalcemia, hypomagnesemia, and hyperphosphatemia secondary to Fleet's Phospho-soda colonoscopy preparation in a patient with jejunoileal bypass. Dig Dis Sci 1997; 42:858–60. - 96. Campisi P, Badhwar V, Morin S, Trudel JL. Postoperative hypocalcemic tetany caused by Fleet Phosphosoda preparation in a patient taking alendronate sodium: report of a case. Dis Colon Rectum 1999; 42:1499–501. - 97. Fass R, Do S, Hixson LJ. Fatal hyperphosphatemia following Fleet phospho-soda in a patient with colonic ileus. Am J Gastroenterol 1993;88:929–32. - 98. Ullah N, Yeh R, Ehrinpreis M. Fatal hyperphosphatemia from a phosphosoda bowel preparation. J Clin Gastroenterol 2002;34:457–8. - 99. Hixson LJ. Colorectal ulcers associated with sodium phosphate catharsis. Gastrointest Endosc 1995;42:101–2. - 100. Zwas FR, Cirillo NW, el-Serag HB, Eisen RN. Colonic mucosal abnormalities associated with oral sodium phosphate solution. Gastrointest Endosc 1996;43:463– 6. - 101. Clarkston WK, Tsen TN, Dies DF, Schratz CL, Vaswani SK, Bjerregaard P. Oral sodium phosphate versus sulfate-free polyethylene glycol electrolyte lavage solution in outpatient preparation for colonoscopy: a - prospective comparison. Gastrointest Endosc 1996; 43:42–8. - 102. Lieberman DA, Ghormley J, Flora K. Effect of oral sodium phosphate colon preparation on serum electrolytes in patients with normal serum creatinine. Gastrointest Endosc 1996;43:467–9. - 103. Holte K, Neilsen KG, Madsen JL, Kehlet H. Physiologic effects of bowel preparation. Dis Colon Rectum 2004;47:1397–402. - 104. Frizelle FA, Colls BM. Hyponatremia and seizures after bowel preparation: report of three cases. Dis Colon Rectum 2005;48:393–6. - 105. Markowitz GS, Nasr SH, Klein P, *et al.* Renal failure due to acute nephrocalcinosis following oral sodium phosphate bowel cleansing. Hum Pathol 2004; 35:675–84. - 106. Ness RM, Manam R, Hoen H, Chalasani N. Predictors of inadequate preparation for colonoscopy. Am J Gastroenterol 2001;96:1797–802. - 107. Lukens FJ, Loeb DS, Machicao VI, Achem SR, Picco MF. Colonoscopy in octogenarians: a prospective outpatient study. Am J Gastroenterol 2002;97:1722–5. - 108. Ainley EJ, Winwood PJ, Begley JP. Measurement of serum electrolytes and phosphate after sodium phosphate colonoscopy bowel preparation: an evaluation. Dig Dis Sci 2005;50:1319–23. - 109. Gumurdulu Y, Serin E, Ozer B, Gokcel A, Boyacioglu S. Age as a predictor of hyperphosphatemia after oral phosphosoda administration for colon preparation. J Gastroenterol Hepatol 2004;19:68–72. - 110. Beloosesky Y, Grinblat J, Weiss A, Grosman B, Gafter U, Chagnac A. Electrolyte disorders following oral sodium phosphate administration for bowel cleansing in elderly patients. Arch Intern Med 2004;163: 803–808. - 111. Wong NA, Penman ID, Campbell S, Lessells AM. Microscopic focal cryptitis associated with sodium phosphate bowel preparation. Histopathology 2000; 36:476–8. - 112. Taylor C, Schubert ML. Decreased efficacy of polythelyene glycol lavage solution (Golytely) in the preparation of diabetic patients for outpatient colonoscopy: a prospective and blinded study. Am J Gastroenterol 2001;96:710–4. - 113. Dahshan A, Lin CH, Peters J, Thomas R, Tolia V. A randomized, prospective study to evaluate the efficacy and acceptance of three bowel preparations for colonoscopy in children. Am J Gastroenterol 1999; 94:3497–501. - 114. Trautwein AL, Vinitski LA, Peck SN. Bowel preparation before colonoscopy in the pediatric patient: a randomized study. Gastroenterol Nurs 1996;19:137–9. - 115. Chilton AP, O'Sullivan M, Cox MA, Loft DE, Nwokolo CU. A blinded randomized comparison of a novel low dose triple regimen with Fleet[®] phosophoda: a study of colon cleanliness, speed, and success of colonoscopy. Endoscopy 2000;32:37–41. - Rex DK, Imperiale TF, Latinovich DR, et al. Impact of bowel preparation on efficacy and cost of colonoscopy. Am J Gastroenterol 2002;97:1696–700.